
Unclassified
SECURITY CLASSIFICATION OF TI- iS PAGE

la. REPORT SECURITY CLASSIFCATION A D -A 230 380 LL CiJpyUnclassified 'el.- I _~
"

",

2a. SECURITY C..ASSiFITiON AU W %'" g A4 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATION/DOWNGR...SCHE.Eis unlimited.

4. PERFORMING ORGANIZATION RIET NUMBERo7n . 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR 492-4 N00014-89-J-1988

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (if applicable) Office of Naval Research/Dept. of Navy

6C. ADDRESS (Oty, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

545 Technology Square InformaL.on Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDINGiSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd. ELEMENT NO. NO. NO ACCESSION NO.

Arlington, VA 22217

11. TITLE (Include Security Classification)

Results in Computational Geometry: Geometric Embeddings and Query-Retrieval Problems.

12. PERSONAL AUTHOR(S)
Mark David Hansen

13a. TYPE OF REPORT 113b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical FROM TO j November 1990 I 95
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Many fundamental questions in computational geometry arise from the consider-

ation of distributions of points in euclidean space. This thesis explores two important

areas of computational geometry in this setting: geometric embeddings and query-

retrieval problems. Each area is addressed in a separate part of the thesis.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

(3 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT C] DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

L_ Carol Nicolora (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

tus G.vus Ithimq 0141a, 19--07047
Unclassified

90 1.1- 4,0 10Y&()

19. Part I examines the geometric embedding problem for many of the graphs which

are important in the study of parallel computation 133]. Given an undirected graph

G with n vertices, and a set P of n points in the plane, the geometric embedding

problem consists of finding a bijection from the vertices of G to the points in the plane

which minimizes the sum total of edge lengths of the embedded graph. We give fast

approximation algorithms for embedding d-dimensional grids in the plane which are

within a factor of O(log n) times optimal cost for d > 2 and O(log2 n) for d = 2. We

also show that any embedding of a hypercube, butterfly. or shuffle-exchange graph

must be within an 0(log n) factor of optimal cost. When the points of P are randomly

distributed, or arranged in a grid, we give a polynomial time algorithm which can

embed arbitrary weighted graphs in these points with cost within an 0(log2 n) factor

of optimal. Many of these results extend to higher dimensions when P C Rd.

Aside from the intrinsic mathematical interest of these problems, they also have

applications in the held of parallel processing. For example. we show how the al-

gorithms which we develop for geometric embeddings can be used to give solutions

which are within an 0(log 2 N) factor of optimal to problems of performance opti-

mization for array-based paralMe processors in the following areas: communication

load balancing, dynarmic allocatiou of jobs to processors, reconfiguring around faults.

and simulating other architectures.

Part II of this thesis examines query-retrieval problems concerning distributions

of points in euclidean space. In this part, we describe a new technique for solving a

variety of query-retrieval problems in optimal time with optimal or near-optimal space

[2, In particular, we use the technique to construct algorithms and data structures

for circular range searching, half-space range searching, and computing k-nearest

neighbors in a variety of metrics. For each problem and each query, the response

to the query is provided in 0(k) or O(k + logn) time where k is the size of the

response and n is the size of the problem. (E.g., for the n-point k-nearest neighbors

problem. the k-nearest neighbors of any query point are provided in 0(k + logn)

steps.) Depending on the problem being solved, the space required for the data

structure is either linear or O(nlogn). Hence, the time bounds are optimal and

the space bounds are optimal or near-optimal. Previously known data structures

for these problems required a factor of fl(logvn(loglogn) 2) or fl(lognloglogn) more

space and/or more time to answer each query.

Our compaction technique incorporates planar separators, filtering search, and

the probabilistic method for discrepancy problems. The fundamental idea is that kth -

order Voronoi diagrams (and other suitable proximity diagrams) can be compacted

from k°(1)n space to 0(n) space and still retain all the information that is essential

for solving query problems.

Results in Computational Geometry:

Geometric Embeddings

and Query-Retrieval Problems
by

Mark David Hansen

A.B., Mathematics
Cornell University

(1986)
M.S.. Mathematics

University of Chicago
(1987)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1991

© Massachusetts Institute of Technology 1991

Signature of Author ...
Department of Mathematics

January 11, 1991
C ertified by ..

F. Thomson Leighton
Professor of Applied Mathematics

Thesis Supervisor

A ccepted by ...
Daniel J. Kleitman. Chairman

Applied Mathematics Committee

A ccepted by ...
Sigurdur Helgason, Chairman

Departmental Graduate Committee

9

6 3

Results in Computational Geometry:

Geometric Embeddings Acc,:io,,i For

and Query-Retrieval Problems-"TIS C,.&I
11 iDC TAB El

by . ,mo_;)ced El
if c ation

Mark David Hansen BY

Ut.-L i ..:At :; I

Submitted to the Department of Mathematics Avl!--- I ',LyCC,
on January 11, 1991. in partial fulfillment of the Av 7 .tnd or

requirements for the degree of cist

Doctor of Philosophy

Abstract

Many fundamental questions in computational geometry arise from the consider-

ation of distributions of points in euclidean space. This thesis explores two important

areas of computational geometry in this setting: geometric embeddings anr query-

retrieval problems. Each area is addressed in a separate part of the thesis.

Part I examines the geometric embedding problem for many of the graphs which

are important in the study of parallel computation,[33]. Given an undirected graph (

G with n vertices, and a set P of n points in the plane, the geometric embedding

problem consists of finding a bijection from the vertices of G to the points in the plane

which minimizes the sum total of edge lengths of the embedded graph. We give fast

approximation algorithms for embedding d-dimensional grids in the plane which are

within a factor of O(log n) times optimal cost for d > 2 and O(log 2 n) for d = 2. We

also show that any embedding of a hypercube, butterfly, or shuffle-exchange graph

must be within an O(log n) factor of optimal cost. When the points of P are randomly

distributed, or arranged in a grid, we give a polynomial time algorithm which can

embed arbitrary weighted graphs in these points with cost within an O(log2 n) factor

of optimal. Many of these results extend to higher dimensions when P C Rd.

4

Aside from the intrinsic mathematical interest of these problems, they also have

applications in the field of parallel processing. For example, we show how the al-

gorithms which we develop for geometric embeddings can be used to give solutions

which are within an 0(log2 A") factor of optimal to problems of performance opti-

mization fir array-based parallel processors in the following areas: communication

load balancing, dynamic allocation of jobs to processors, reconfiguring around faults.

and simulating other architectures.

" Part II of this thesis examines query-retrieval problems concerning distributions

of points in euclidean space. In this part, we describe a new technique for solving a

variety of query-retrieval problems in optimal time with optimal or near-optimal space,

[2]. In particular, we use the technique to construct algorithms and data structures

for circular range searching, half-space range searching, and computing k-nearest

neighbors in a variety of metrics. For each problem and each query, the response

to the query is provided in 0(k) or O(k + logn) time where k is the size of the

response and n is the size of the problem. (E.g., for the n-poirxt k-nearest neighbors

problem, the k-nearest neighbors of any query point are provided in 0(k + log n)

steps.) Depending on the problem being solved, the space required for the data

structure is either linear or 0(n log n). Hence, the time bounds are optimal and

the space- bounds are optimal or near-optimal. Previously known data structures

f6r these problems required a factor of Q (log n(log log n)2) or Q (log n log log n) more

space and/or more time to answer each query.

Our compaction technique incorporates planar separators, filtering search, and

the probabilistic method for discrepancy problems. The fundamental idea is that kth -

order Voronoi diagrams (and other suitable proximity diagrams) can be compacted

from V°O)n space to 0(n) space and still retain all the information that is essential

for solving query problems.

Thesis Supervisor: F. Thomson Leighton
Title: Professor of Applied Mathematics

Contents

Acknowledgments 9

Dedication 11

Introduction 13

Geometric Embeddings 14

Query- Retrieval Problems 14

I Geometric Embeddings 15

1 Overview of Geometric Embedding Results 17

1.1 Geometric Embeddings 17

1.2 Mathematical Results is

1.2.1 Arbitrary Points 19

1.2.2 Arrays of Points and Randomly Distributed Sets of Points . . 19

1.3 Applications 20

1.3.1 Efficient Parallel Computation 20

1.3.2 Network Reconfiguration and Wafer-Scale Integration 21

1.4 Related Work 22

1.5 Outline of Part I 22

2 Hypercube Related Graphs 25

5

6 CONTEXTS

3 d-Dimensional Grids 27

3.1 O verview . 27

3.2 A Review of Routing Results for Grids 28

3.3 Finding Dense Subsets of Points in the Plane 30

3.3.1 The Divide and Conquer Subroutine 34

3.3.2 The Grid Embedding Algorithm 38

3.4 Running Time Analysis 39

4 Arbitrary Weighted Graphs 41

4.1 Embedding into an Array of Points 41

4.2 Embedding into a Randomly Distributed Set of Points 44

5 Applications to Parallel Processing 49

5.1 Minimizing Communication Load 50

5.1.1 Simulating Other Architectures 52

5.2 Dynamic Allocation of Resources on a Multiprocessor 52

5.2.1 Wafer-Scale Integration and Reconfiguring Around Faults in an

Array-Based Processor 54

5.3 Configuring Large Area Distributed Computing Networks 54

II Query-Retrieval 57

6 Introduction 59

6.1 Overview of Query-Retrieval Results 59

6.2 Main Results 60

6.2.1 Planar k-Nearest Neighbor Search 60

6.2.2 Circular Range Search 61

6.2.3 Half-Space Range Search in Three Dimensions 62

6.3 Outline of Part II 62

CONTENTS

7 Voronoi Diagram Compaction 65

7.1 Review of Voronoi Diagrams 65

7.1.1 The Euclidean Plane 6.5

7.1.2 Other Metrics 66

7.2 Planar Point Location 6S

7.3 The Voronoi Diagram Compaction Technique 68

7.4 Planar Separator Techniques 69

7.5 Probabilistic Techniques 72

7.5.1 Review of Chernoff Bounds 72

7.5.2 Assigning the P to Buckets 73

7.6 The Compacted Data Structure 74

7.7 Extensions to Voronoi Diagrams in Other Metric Spaces 77

7.8 Removing Randomness from the Construction 78

7.9 Total Preprocessing Time s0

7.10 A Monte Carlo Construction 81

8 Applications of the Compaction Technique 83

8.1 k-Nearest Neighbor and Circular Range Search 83

S.2 Half Space Range Search and Power Diagrams84

8.3 k-Nearest Neighbors in the Weighted Metric 88

8.3.1 Further Extensions of the Compaction Technique 89

Bibliography 91

S CONTENTS

Acknowledgments

A thesis is as much a product of a student's environment as of his own mind. Given

this. I owe a great deal of thanks to the theoretical computer science community at

MIT. The caliber of scholarship and camaraderie which I have known here has been

exceptional.

Among all the talented individuals within this community, my advisor Tom

Leighton stands out in many respects. His quick mind and deep mathematical insight

have proven invaluable for suggesting areas of research and innovative approaches to

problem solving. In addition. I am grateful for Tom's support of all my academic

eideavors, both in mathematics and elsewhere at MIT.

I also owe a great deal of thanks to Alok Aggarwal. As an advisor and friend, he

has been an enthusiastic supporter. Alok introduced me to the field of computational

geometry and much of the work in this thesis was done jointly with him.

Finally, I would like to thank Mike Sipser for reading the initial draft of this thesis

and serving on my committee.

During the past three years, I have found that most of the learning which occurs at

MIT happens not in the classroom, but from conversations and joint work with fellow

graduate students. In addition to being great hockey and softball teammates, the

following people contributed significantly to my understanding of computer science

and to the research contained in this thesis: Avrim Blum, Tom Cormen, Bruce Maggs,

Seth Malitz. James Park. Satish Rao. Eric Schwabe, and Cliff Stein.

Anybody who has spent any time on the third floor of LCS knows that the com-

munity could not function without Be Hubbard. I've really appreciated her help and

10

sense of humor over the past three years. I am also very grateful to Phyllis Ruby

for guiding me through the bureaucratic channels of MIT and helping to keep me in

good standing with the math department administration.

In terms of financial support. I would like to thank the National Science Foun-

dation for a three year graduate fellowship and the DARPA Research Program in

Parallel Processing for a research assistantship during my final year at MIT.

These acknowledgments could not be complete without thanking Loraine Chow

for the years of love and support she has given me during my graduate school career.

These years would not have been nearly as happy if I had not had her to share them

with me.

Finally, I would like to thank my family for making this thesis possible. When my

father. David. passed away eight years ago, I was just beginning college as a Cornell

freshman. Three years later, when I began to plan for graduate school, I would often

remember the following incident from my childhood: As a boy, I used to enjoy helping

my father work in his woodshop. Unfortunately, I never had the discipline to learn

to use his tools properly and as a result my woodworking projects were rarely very

successful. One day, while I was trying to build a simple birdhouse, I mentioned that

when I grew un I hoped to have a Ph.D. like he did. Looking at my shoddy birdhouse.

with bent nails sticking out all over it. he said. "Mark, I'm worried that you won't

have the patience and discipline you need to get through graduate school."

I have to admit that mv father's remark was pretty close to the truth and were

he here today, I'm sure this thesis would surprise him. What he underestimated.

though, was not my own self-discipline, but the love, strength, and support which I

would receive from the family he and my mother had raised. Time and again over the

past four years. my mother Ann. brother Chris, and sister Leigh, have been there for

me when I needed them. Since I can never thank them enough for all they have done.

I only hope that this work reflects the high standards of scholarship and character

which my family has taught me.

For my parents, Ann and David Hansen.

12

Introduction

This thesis examines problems in computational geometry which arise from the con-

sideration of distributions of points in euclidean space. The fundamental case concerns

a set of n points P = P1, P2,. . ,p, in the euclidean plane. The class of problems we

present involves constructing the optimal embedding of of a given graph, such as a

mesh, in P. Such problems arise, for example, when one tries to determine how to

optimally link together a group of distributed computers into a mesh or hypercube

network. This class of problems is referred to as the geometric embedding problem.

In general. geometric embedding problems are NP-complete. In this thesis, we give

approximation algorithms which yield nearly optimal solutions to a large variety of

geometric embedding problems in polynomial time.

The second class of geometry problems we consider are query-retrieval problems.

In this case, we are interested in "retrieving" the answers to a set of queries about

P. For example: "Among the n points in the plane, find the k points that are closest

to position (xi, y,) for i = 1 ... m." The task is to preprocess P and devise a data

structure so that each query can be answered as quickly as possible. In this thesis, we

are primarily concerned with minimizing the space used by the query-retrieval data

structure, while maintaining optimal time answers to individual queries.

13

14 INTRODUCTION

Geometric Embeddings

Part I of this thesis describes the geometric embedding results. In Chapter 1 a precise

definition of the geometric embedding problem is given, the major contributions of

this thesis in that area are described, and applications of this work to solving par-

allel processing problems are discussed. Chapters 2 and 3 describe approximation

algorithms for near optimal embeddings of graphs important to the theory of parallel

computation: the hypercube, butterfly, shuffle-exchange graph, and mesh. Chapter 4

presents another class of approximation algorithms for geometric embeddings which

are based on a powerful separator theorem due to Leighton and Rao (381. These

algorithms give near-optimal embeddings of any graph in the plane. provided some

assumptions are made about the distribution of points P. Finally, in Chapter 5 we

describe in detail the relationship between the embedding results and problems in

parallel computation.

Query-Retrieval Problems

Part II of this thesis describes the query-retrieval results. In Chapter 6 we give some

background on the importance of data structures in the solution of query-retrieval

problems. The main applications to k-nearest neighbor search, circular range search.

and half-space range search are then described. Chapter 7 contains a description of

the fundamental compaction technique which allows us to greatly reduce the space

required to store a Voronoi diagram's essential information for solving query-retrieval

problems. Lastly, in Chapter 8, the application of this compaction technique to the

three problems described in Chapter 6 is presented in detail.

Part I

Geometric Embeddings

15

Chapter 1

Overview of Geometric

Embedding Results

1.1 Geometric Embeddings

A geometric embedding of G = (V, E) into a set of points P in euclidean space is

a bijection f : V -+ P. We are interested in finding f which minimizes the total

edge length of the graph induced on P: E(u,v)EE dist(f(u), f(v)). Here, dist is the

euclidean metric. The most famous example of a geometric embedding problem is

the euclidean traveling salesman problem. In this case, G is a cycle on N nodes and

many approximation algorithms for finding the near-optimal cost embedding of G

into points in R2 are known. One example of such an approximation algorithm is

due to Christofides [23]. In this paper, we will consider the geometric embedding

problem for graphs which are important in the theory of parallel computation: grids.,

hypercubes, butterflies, and shuffle exchange graphs.

We will also consider some special cases of the geometric embedding problem in

the plane and higher dimensional spaces when the set of points P are distributed

randomly, or arranged in a grid. With these restrictions on P we are able to address

the more general problem of embedding weighted, undirected graphs in Rd. For a

17

18 CHAPTER 1. OVERVIEW OF GEOMETRIC EMBEDDING RESULTS

weighted graph, our goal is to minimize the weighted sum of edge lengths in the

graph induced on P: E(U,)E w(uv)dst(f(u),f(v)). Here, w(u,v) is the weight of

edge (u,v) E E. In this case we may also consider dist to be the manhattan (L 1)

metric. Some recent results in multicommodity flow [38] allow us to achieve near-

optimal embeddings of arbitrary weighted graphs in these two special cases. All of

these results have important applications to parallel processing.

1.2 Mathematical Results

Polynomial time algorithms for finding optimal or O(log N) times optimal embed-

dings in Rd of simple structures such as cycles, trees, or stars are familiar to many

researchers [11, 23]. In this paper, we study the problem of embedding more com-

plicated graphs in euclidean space. The structures we study include many of the

important graphs from the theory of parallel computation: hypercubes, butterflies,

shuffle-exchange graphs, meshes, cubes, and higher dimensional grids.

A straightforward application of known routing results proves that any embedding

of the high-bandwidth, low diameter hypercube-like graphs is within an O(log N) fac-

tor of optimal. Meshes, cubes, and higher-dimensional grids do not have the nice rout-

ing properties of these graphs and therefore embedding them efficiently constitutes a

significantly more difficult problem. Section 3 presents the analytic techniques which

enable us to give a fast algorithm for embedding these graphs within an O(log N) or

O(log2 N) factor of optimal. Some of these techniques can be generalized and used

together with separator approximation algorithms [381 to give near-optimal embed-

dings of arbitrary weighted graphs into uniform distributions of points in euclidean

space.

The embedding results in this paper are grouped into two categories based on the

arrangement of the set of points P into which we are embedding the graph G. P

could be (1) an arbitrary set of points, or (2) a array of points or a random set of

1.2. .MATHEMATICAL RESULTS 19

uniformly distuibuted points.

1.2.1 Arbitrary Points

For hypercubes, butterflies, and shuffle-exchange graphs it is straightforward to show

that any embedding is near-optimal. In fact, in this case, we need not even assume

that the points P are in the plane, but only that they are in some graph which obeys

the triangle inequality.

Theorem 1.2.1 Given a graph G which is an N-node hypercube, butterfly, or shuffle-

exchanqe graph, and a set P of points connected by edges which obey the triangle

inequality, any embedding of G into P has cost within an O(log N) factor of optimal.

For grids, cubes, and higher d-dimensional grids, the problem is substantially more

difficult, and we give a fast algorithm for near optimal embeddings in the plane.

Theorem 1.2.2 There exists an algorithm which, when given a d-dimensional grid G

on N nodes and a set P of N points in the plane, in O(N log N) time finds a geometric

embedding with cost a factor of O(log2 N) times optimal when G is a square mesh

(d = 2) and O(log N) times optimal when G is a cube or higher dimensional grid

(d> 2).

In fact, Theorem 1.2.2 generalizes to the case P C Rk in the following manner.

We can embed grids of dimension k into Rk within an O(log2 N) factor of optimal

cost. and grids of dimension d > k within an O(log N) factor.

1.2.2 Arrays of Points and Randomly Distributed Sets of

Points

We can achieve significantly more general embedding results when we place some

restrictions on the arrangement of the points P. If P is a set of evenly spaced points

20 CHAPTER 1. OVERVIEW OF GEOMETRIC EMBEDDING RESULTS

arranged in a d-dimensional array in Rd for some fixed constant d, then we can use

the graph separator approximation results of Leighton and Rao [38] to construct a

polynomial time algorithm which produces a geometric embedding of an arbitrary

weighted graph G into P with cost within an O(log2 N) factor of optimal.

Theorem 1.2.3 There exists a polynomial time algorithm which, when given an ar-

bitrary N-node weighted graph G and a d-dimensional array of N points P in Rd.

embeds G in P with cost within an O(log2 N) factor of optimal.

The same theorem holds, with high probability, when P is a random set of uni-

formly distributed points in Rd.

Theorem 1.2.4 There exists a polynomial time algorithm which, when given an ar-

bitrary N-node graph G and a random set of N uniformly distributed points P in Rd,

with high probability embeds G in P with cost within an 0(log 2 N) factor of optimal.

1.3 Applications

1.3.1 Efficient Parallel Computation

Efficient parallel processing requires effective algorithms for embedding large compu-

tational problems into parallel architectures. Given a computation graph for a parallel

algorithm which consists of process nodes and edges between nodes whose processes

exchange data, and a fixed parallel machine architecture, we would like to embed this

computation graph into the architecture in a manner which makes efficient use of the

machine's interconnect network for inter-process communication. A poor embedding

could result in an assignment of process nodes to processors which clogs the network

with inter-process communication and greatly degrades running time.

We measure the efficiency of an embedding of a computation graph into a parallel

architecture in terms of the communication load this embedding induces on the ma-

1.3. APPLICATIONS 21

chine. Communication load is a measure of the total volume of traffic an algorithm

produces on a network, and is defined to be the sum total of distances that inter-

process messages travel in the interconnect network. As a corollary of Theorem 1.2.3

we show how to embed any computation graph in an array-based parallel machine

with communication load within an O(log2 N) factor of optimal. This corollary can

also be interpreted to mean that we can reconfigure an array-based machine to sim-

ulate any other architecture within an O(log 2 N) factor of optimal communication

load.

Theorems 1.2.1. 1.2.2, and 1.2.4 allow us to give algorithms for the efficient dy-

namic allocation of resources on a multiprocessor. Suppose that our machine has a

number of users who are continually submitting jobs for parallel processing. The ma-

chine's operating system dynamically allocates processors to jobs, and as jobs finish.

holes of idle processors open up in the network. For arbitrary holes in an array-based

processor, our results give algorithms for embedding jobs with near-optimal commu-

nication load when these jobs have common computation graphs such as grids, cubes,

hypercubes, shuffle-exchange graphs, or butterflies. When the holes are assumed to

be randomly and uniformly distributed, we can give efficient embedding algorithms

for any computation graph.

1.3.2 Network Reconfigurat'on and Wafer-Scale Integra-

tion

Consider a nation-wide network, similar to one operated by the weather service, of

computation centers linked over standard telecommunication channels. If the network

is tracking a storm system. it will need to be continually reconfigured as centers enter

and drop out. Theorems 1.2.1, 1.2.2, and 1.2.4 provide algorithms for dynamically

reconfiguring in a manner which produces networks with near-optimal communication

overhead.

In wafer-scale integration [371 reconfiguring the live cells on a silicon wafer into

22 CHAPTER 1. OVERVIEW OF GEOMETRIC EMBEDDING RESULTS

a usable network comprises a geometric embedding problem. Similarly. consider re-

configuring the live processors on an array-based machine with faults. Our results

indicate how to reconfigure for near-optimal communication load on the wafer or ar-

ray in the presence of arbitrary faults when the embedded network is a grid, cube. or

hypercube-like graph. If faults are random or uniformly distributed, we can reconfig-

ure well for any embedded network.

1.4 Related Work

Several special cases of finding optimal solutions to the geometric embedding problem

have been proven NP-hard. These include the cases when G is a traveling salesman

tour or binary tree [32]. Christofides' approximation algorithm for the geometric

traveling salesman achieves embeddings which are 1.5 times optimal. Papadimitriou

and Yanakakis [40] have further shown that the geometric embedding problem is

NP-hard for large classes of trees.

In a recent paper, Bern, Karloff, Raghavan. and Schieber [11] studied geometric

embeddings of binary trees, cycles, and stars. They present a number of interesting

results including very fast approximation algorithms for embedding these graphs in

the line and plane. The focus of their paper is on finding fast algorithms for efficiently

embedding these simple structures. In contrast, the present paper concentrates on

finding near-optimal embedding techniques for some of the more complex graphs

studied in the theory of parallel processing. In the case of d-dimensional grids, the

approximation algorithm we present also happens to be very fast.

1.5 Outline of Part I

The remainder of Part I is divided into four chapters. Chapter 2 presents Theorem

1.2.1 as a straightforward corollary of some well-known routing results. Here we

indicate the connection between routing results and geometric embeddings which

1.5. OUTLINE OF PART I 23

will be used in the analysis of the grid embedding algorithm. Chapter 3 presents

the approximation algorithm and mathematical analysis necessary to prove Theorem

1.2.2. Chapter 4 contains the probabilistic analysis and approximation algorithms

for Theorems 1.2.3 and 1.2.4. Finally. Chapter 5 discusses some applications of these

theorems to parallel processing.

24 CHAPTER 1. OVERV IEW OF GEOMETRIC EMBEDDING RESULTS

Chapter 2

Hypercube Related Graphs

In this chapter we use well known routing results to prove Theorem 1.2.1 and show

that any embedding of the high-bandwidth, low-diameter hypercube-like graphs is

within an O(log N) factor of optimal. Notice that the proof given below does not use

any properties of euclidean space, but only requires that the metric being embedded

into obev the triangle equality.

Theorem 1.2.1 Given a graph G which is an N-node hypercube, butterfly, or

shuffle-exchange graph, and a set P of points connected by edges which obey the

triangle inequality, any embedding of G into P has cost within an O(log N) factor of

optimal.

Proof: Let P be a complete graph on N points with edge weights which obey

the triangle inequality. (P being points in the plane with the euclidean metric is

hence a special case.) For any subset E of edges in P, let h[Ell be the sum of the

weights of these edges.

First consider the N-node hypercube H. Let f,,t : H - P be an optimal em-

bedding of a hypercube in P. Then let g : H -+ P be any other embedding. Define

fort(H) and g(H) to be the hypercube subgraphs of P induced by the edges of H.

Group the edges of H by dimension, so that we have groups E l , ..., EgNv where the

25

26 CHAPTER 2. HYPERCUBE RELATED GRAPHIS

edges in E connect points across the ith dimension. Then g(E,) defines a matching in

P. The following well-known lemma due to Benes [9] indicates that we can connect

up the pairs in this matching via paths in fopt(H). using each edge of fopt (H) at most

0(1) times:

Lemma 2.0.1 (Benes) Any permutation of N' nodes in the N-node hypercube H

can be routed so that each edge of H is used at most 0(1) times.

Hence, by the triangle inequality, IIg(E;)II O(Ilf 0 pt(H)ll). Summing over the

log N dimensions, we see that j1g(H)f < O(lgN)11o p(H)11.

Now let B be the N-node lutterfly. Again, let fpt : B -- P be an optimal

embedding of a butterfly in P and let g : B --+ P be any other embedding. Then the

edges of g(B) can be decomposed into 4 disjoint partial matchings. (B has degree

4). Another familiar routing lemma [9] shows that each matching can be routed in

fpt(B) using edges at most O(logN) times:

Lemma 2.0.2 (Benes) Any permutation of N nodes in the N-node butterfly B, or

N-node shuffle exchange graph S, can be routed so that each edge of B or S is used

at most O(log N) times.

Hence, using the triangle inequality 1jg(B)Il = 0(logN)IIfo ,(B)JI. The proof for

the shuffle exchange graph is similar. 0

Grids do not have the high bandwidth and low diameter of the three graphs studied

above. Hence we cannot expect to get an O(log N) factor approximation algorithm

for embedding grids using these simple routing ideas alone. We will, however, use

routing results in the analysis of our approximation algorithm for grids.

Chapter 3

d-Dimensional Grids

3.1 Overview

Chapter 3 is devoted to the proof of Theorem 1.2.2.

Theorem 1.2.2 There exists an algorithm which, when given a d-dimensional grid G

on N nodes and a set P of N points in the plane. in O(N log N) time finds a geometric

embedding with cost a factor of O(log2 N) times optimal when G is a square mesh

(d = 2) and O(log N) times optimal when G is a cube or higher dimensional grid

(d > 2).

We begin by using some routing results on grids to prove that certain sub-regions

of the plane are always densely packed with points. A divide and conquer subroutine

is then invoked to embed pieces of the grid into these dense regions. This subroutine

is proven to give nearly optimal embeddings of these pieces provided the image points

are contained in a sufficiently dense region. Finally, we show that these pieces can be

hooked together to form an embedding of the entire grid with near-optimal cost.

27

28 CHAPTER 3. D-DIMENSIONAL GRIDS

3.2 A Review of Routing Results for Grids

Within constant factors, the best routing result which can be achieved for d-

dimensional grids states that:

Lemma 3.2.1 Any permutation of an m point subset of a d-dimensional grid G can

be routed using each edge of G at most 2[rmi times.

In order to prove Lemma 3.2.1, we begin by proving a somewhat less general result

concerning the congestion required to route permutations of an entire d-dimensional

grid:

Lemma 3.2.2 Any permutation of the N = nd points of a d dimensional grid G can

be routed using each edge at most 2N' times.

Proof: The proof proceeds by induction on d. For d = 1 we have a line, and any

greedy routing will work. Now suppose that the theorem holds for d - 1. Pick a

dimension and consider G to be composed of n d - 1 dimensional planes connected

by columns along that dimension. Each point is contained in a unique column with

n - 1 other points. Consider each source and destination pair of the permutation.

By induction we will be finished if we can permute points within their columns so

that each source and destination pair end up in the same plane. For at this stage

we would then have n similar routing problems on the n planes. Each edge of the

columns in our chosen dimension would have been used at most 2n = 2Nd times. and

later stages in the routing never use that dimension again. So it suffices to show that

we can permute the points within a column so source and destination points always

end up in the same plane.

Consider a bipartite graph with one node on each side for each column. Draw an

edge for each source and destination pair between any two columns. See Figure 3-1.

The result is a bipartite graph on 2n nodes which is n-regular. It is well known

that such a graph can be n-colored. That is, color the edges of the graph with n

3.2. A REVIEW OF ROUTING RESULTS FOR GRIDS 29

Figure 3-1: Columns connected by source and destination pairs yield an n-regular
graph which can be n-colored.

colors so that each node has no two edges leaving it of the same color. Since each

colored edge corresponds to a source and destination pair, we can assign each pair to

the plane corresponding to its color. This permutation of points in a column ensures

that sources and destinations end up in the same plane and that at most one source

and one destination get assigned to each point in a given plane.

Lemma 3.2.1 now follows as a corollary of Lemma 3.2.2:

Proof of Lemma 3.2.1: The idea here is to route all of the source-destination

pairs into a sub-cube of G of size fmi1], and then apply Lemma 3.2.2. Hence it

suffices to show that the sources and destination can be packed into such a sub-cube

using each edge of G at most 2 rm1] times. Again pick a dimension and consider

the n - i planes connected by columns along that dimension. Since there are only

m point to go around, at most mi planes contain more than [mi]d - I points. Call

a plane with more than that number heavy. Clearly, each heavy plane contains a

30 CHAPTER 3. D-DIMENSIONAL GRIDS

point in a column which is at most [mn1 away from a light plane with an empty

space in that column. Route this point along its column to that empty space and

proceed in this manner until there are no heavy planes. Since all routing occurs along

columns, and each column intersects at most [m21 heavy planes, no edge gets used

more than [mn] times. Now consider the sub-cube of size [rm ad chopped up into

n non-overlapping slices, corresponding to the points in each of the n planes. By

induction we can pack the points of each plane into the right positions indicated by

the plane's corresponding slice using each edge of the plane at most 2 [([r d-1)

- 2[mf1 times. Then squash down along the columns to pack all of the slices into

the sub-cube. We have now used each edge in the column dimension at most 2Fmd1

times.

By letting d vary from 1 to log N, and observing that the edges of the d-

dimensional grid can be divided into 2d matchings, Lemma 3.2.1 and the proof of

Theorem 1.2.1 indicate that any embedding of a d-dimensional grid in the plane is

within an O(dNa) factor of optimal.

3.3 Finding Dense Subsets of Points in the Plane

Let fpt : G -* P be an optimal cost embedding of a d-dimensional grid among the

N points in the plane. We wish to prove that given any K point subset S C P, at

least half the points of S are contained in a dense sub-region of the plane. For our

purposes dense will be defined in terms of fopt(G) and K by the following lemma:

Lemma 3.3.1 Given any fixed K point subset of the N points in the plane, there

exists a rectangular sub-region of the plane containing K of these points with longest

side length R, where R < (Ka)

Proof: Consider the s x s square region containing all of the points. Starting at the

left side of this region, move a vertical line to the right until exactly K among the K

3.3. FINDING DENSE SUBSETS OF POINTS IN THE PLANE 31

KIS K/
Points Points

0 R

00

Figure 3-2: Finding dense subsets of points in the plane.

distinguished points are contained in the left region of the square defined by the line.

Do the same with a vertical line working from the right to the left. Now let R be the

distance between these two vertical lines. See Figure 3-2. Label the points in the left

section from 1 to 4. Do the same for the right section. By Lemma 3.2.1 we can draw

paths in the optimal ddimensional grid connecting corresponding points so that no

edge of the optimal grid is used more than O(Ka') times. Each of these paths must

cross distance R. Hence 1[fopt(G)[[>: Ql (sR) and therefore R < 0 (lfpt(Gc))c . Now

do the same procedure with horizontal lines from the top and bottom. The center

rectangle now has at least L points and we may shrink it slightly until it holds exactly
2"

Our embedding procedure will be as follows. Use Lemma 3.3.1 to isolate - points

in a dense region S1. Then embed an E-node piece of the grid G, in these points. Of

the remaining points, use Lemma 3.3.1 to isolate 4M in anothe.- perhaps slightly less

0 0 O4

32 CHAPTER 3. D-DIMENSIONAL GRIDS

0

0

0

93

000 000

0

0

Figure 3-3: Gi embeds in the points contained in Si \ Si- 1.

dense, region S2. Then embed an N-node piece of the grid G2 in these points. Proceed

in this manner until all of the points in the plane are used up. Since each rectangular

region 5, is obtained by sliding vertical and horizontal lines in from the boundary of

the plane until the right number of points are captured, S C S 2 C ... C SlsgN+1 . Gi

will be embedded in the N points contained in Si \ S-1. See Figure 3-3.

In this manner, we need a strategy for dividing G up into log N + 1 pieces of

geometrically decreasing size. Let G = G1 U G2 U ... U GogON+l where G1 is obtained

by chopping G in half along one dimension, and each Gi is obtained by chopping Gi-1

in half along its longest dimension. We call this the geometric decomposition of C.

Figure 3-4 shows the geometric decomposition of the two dimensional grid. It is not

hard to see that in d dimensions, this decomposition has the following property:

Observation 3.3.2 Let G be a d-dimensional grid on N points. Then the geometric

decomposition of G = G, uG2u. . "uGigN+l has the property that at most d

edges of G connect Gi to G, for j > i and for j > i + d no edges connect Gi and Gj.

Proof: This proof requires that we give a formal definition of the geometric decom-

position of the grid in d dimensions. Label the pieces in the geometric decomposition

G = G1 U G2 U ... U GigN+I. Imagine that the d-dimensional grid composed of the

3.3. FINDING DENSE SUBSETS OF POINTS IN THE PLANE 33

G5

G3

G1 G

G2

Figure 3-4: A geometric decomposition of the grid.

integer coordinate points in euclidean d-space:

G= {1,2,...,n} x ... x {1,2,...,n}

d

Edges connect adjacent points in the grid whose coordinates differ along only one

dimension. Then we have:

G, [, 1,)x..x[,n
= [[1,n] x... x[1,n]

2 2
= [+ 1,n] x [1, x [1,n] x...×1,n]

Gd = rGd 2 + ,]×- 7 + 1,n] x [1, .]

Gd+1 = n+ 1,- 3x[+ 1,n] x... x [n + 1,n]
2 42 22
3n n 3

Gd+2 = [3-+1,n]x[n + 1 3n,' x× [n +1,n)X...x[[+ l n]
4 4 22

2 -J+ 1 - 1 -21.[J+l - 1

= [2 iJ+ 2 i+

imodd

34 CHAPTER 3. D-DIMENSIONAL GRIDS

2LJ - 1 2 -i
J+ l - 1

x 2LiJ n+ 21iJ+l n

2[LiJ - 1 2
x n+1,n] ... 2Li n + 1,nI

(d-1)-(imodd)

The edges of G which leave Gi and go into smaller Gj for j > i all connect points

along the ((i - 1) mod d) + 1 dimension. Notice that for each progressively smaller

piece, Gi+,, Gi+2,..., the size of the face adjacent to Gi is halved. Since (;-)7-' is

an upper bound on the number of edges leaving Gi and entering Gi+1 , the first part

of Observation 3.3.2 follows. Furthermore, if we look at the ranges of coordinate

values in the formula for Gi, we see that by level Gi+d, all of these ranges have been

reduced in half, and hence the edges leaving Gi cannot possibly enter any of the Gj

for j > i + d. Ii

We now indicate how to embed Gi into Si \ Si-1 using a divide and conquer

subroutine. For simplicity's sake, we suppose that Gi is an M-node d-dimensional

grid. It will be clear how to modify the subroutine to handle the case where Gi is not

perfectly square.

3.3.1 The Divide and Conquer Subroutine

Let R- be the length of the longest side of the region Si containing the M-point subset

P C P into which we are embedding Gi. A straightforward method of embedding

the d-dimensional grid Gi into Pi consists of dividing the points in half, recursively

embedding half of Gi on each set of points, and then drawing in the MA connecting

edges. If we are careful about how we divide up P, we can achieve an approximation

algorithm which yields an embedding with cost bounded by a function of M and

R,. In order to implement such a divide and conquer algorithm, we use the natural

decomposition tree for the grid. In two dimensions, we simply split G down the middle

to get two rectangles. Then split these rectangle down the middle to get two squares,

proceeding in this manner for log M levels. See Figure 3-5. This idea generalizes

3.3. FINDING DENSE SUBSETS OF POINTS IN THE PLANE 35

DD.. mmDD..

Figure 3-5: The natural decomposition tree for the grid is used in a divide and conquer
embedding.

to d dimensions in the obvious fashion. The important observation concerning this

decomposition is:

Observation 3.3.3 Two adjacent blocks on the ith level of the natural decomposition
tree of G have at most 0 edges of Gi passing between them.

In order to prove Observation 3.3.3, we give a formal definition of the natural de-

composition tree in d dimensions. Let G be an N node d-dimensional grid. We define

the standard binary decomposition tree on G by recursively splitting subsections of

G in half. For example, if N = nd and G is the d-dimensional grid composed of the

integer coordinate points in euclidean d-space:

G = {1, 2, ... , n} x ... x f1,2,...,n

At the first level we split G into two rectangular sub-grids isomorphic to

{1,2,..., n} l{1,2,...,n} x ... x {1,2,...,nl

d

In this manner, at the ith level, G has been decomposed into 2' rectangular grids, all

isomorphic to

f 2 _ x 11 2 ... I n }x 11,2,..., n }x ... x f{1, 2,..., n

i.m;dd d-imodd

Proof of Observation 3.3.3: At level i, where blocks have size N, we split

them by cutting along the d - 1" dimensional plane perpendicular to the i mod d+ 1

36 CHAPTER 3. D-DIMENSIONAL GRIDS

(.. . d-1

dimension. Hence we cut n Y- edges.

n<d-i n_d 1
T- T 2i-~dd -< 2 [jJ(d-1)+imodd

n d-i 1
2;-ti+;moddJ

, n d- 1 2 (l n~
-- 2 2i'2 -

N d-i

=C 7-]

We are almost ready to prove a bound on the cost of an embedding given by the

divide and conquer algorithm. First, however, we need the following technical lemma:

Lemma 3.3.4 Given N points in an s x s square region of the plane, for 0 < i <

log N, we can subdivide the plane into disjoint rectangular regions B', ..., B ,, each

containin y, points so that perimeter(B.) <_ 4v22s.j

2i

Proof: To begin, assume the plane has been rotated so that no two points share

the same vertical or horizontal coordinates. We now proceed by induction. Let

B1 = the s x s square containing all the points. Then perimeter(BO) = 48.

On the even levels, we will divide boxes by drawing horizontal lines, and on the

odd levels, by drawing vertical lines. So suppose that Bi ... , B2. have been con-

structed to satisfy the lemna. Then we divide B 2' in half by drawing a verti-

cal fine which splits the points contained in B 2' into two equal sets contained in

boxes B 2- and B2+l . Repeat this process on these two boxes, using horizon-
n2(41) p2(41) D2(41) n2(4+)

tal lines, in order to generate B4(-3 , -'4(-2(, B 4j-1 , and B4j . See Figure 3-F,2,'+1, •4 2(i+l Z2 2-()

6. We then have: j=1 peimeer(Bi) =) <

E22' 2perimeter(B?') < 2(4V22is) = 4V'_s. The lemma follows by induction.

0

3.3. FINDING DENSE SUBSETS OF POINTS IN THE PLANE 37

0

Figure 3-6: Dividing Bj - 2 into four rectangles containing an equal number of points

The following lemma shows that this divide and conquer subroutine gives a bound

on the cost of embedding Gi into Pi in terms of M and Ri.

Lemma 3.3.5 Suppose we are given M points in region Si with longest side length

R. Then in O(M log M) time we can embed the d-dimensional grid Gi on these

points costing O(v1"Mlog MR,) when d = 2 and OM I)when d > 2.

Proof. As in the proof of Lemma 3.3.4, divide Si into regions Bj, 0 < i <_ log M,

1< j < 2i. Contained within the rectangular regions B-k at level j, we draw in

the edges from the (j + 2)n d level of the natural decomposition tree of Gi indicated

in Figure 3-5. For any rectangular region Bj, the maximum distance between any

two points is at most half the perimeter. Hence by Observation 3.3.3, drawing in all
of the edges at level j will cost at most (M ,diam(Bk-) < (f'2/-

< I 2V/MRi if d=2

-[2M' '(2-i)iRi if d>2

Summing over the log M levels gives us the lemma. In the d = 2 case, the sequence

is not geometric so we get the extra log factor. We leave the running time analysis

38 CHAPTER 3. D-DIMENSIONAL GRIDS

to Section 3.4. 0

We are now ready to give the main algorithm for embedding the entire d-

dimensional grid G into P.

3.3.2 The Grid Embedding Algorithm

1. Use Lemma 3.3.1 to draw log N nested rectangular regions Si C S 2 C ... C

SogN+1 in the plane so that S contains a points of P, S, \ S, contains a

points of P, and diameter(S) = O(llLpt(G)jj(2L)-Y). See Figure 3-3.

2. For i = 1, ..- ,log N + 1 use the divide and conquer subroutine to embed piece

G from the geometric decomposition into S; \ S,- 1.

This algorithm gives an assignment of the nodes of G to the points of P. Call this

map h : G --+ P. The bounds on the diameters of the nested rectangles S C S 2 C

... C SloiN+i allow us to prove the following lemma.

Lemma 3.3.6 Given N points in the plane and G = G, U G 2 U ... U G1o N+1, a

geometric decomposition of the d-dimensional grid, we can embed the pieces G1, ... ,

GlogN+l in the plane so that each Gi lies inside Si and the total cost of these embed-

dings is O(IIf,t(G)II log2 N) for d = 2 and O(IIf,(G)II log N) for d > 2.

Proof: Draw the nested rectangles as in Figure 3-3. Now apply the divide and con-

quer algorithm to embed Gi on the points in Si \ Si- 1. By Lemma 3.3.5, the cost of

embedding G, is O((N) A diameter(Si)) when d > 2 and O(-log idiameter(Si))

when d = 2. Since diameter(S) 12 we have Ih(GjHI

O(Ilfo t(G)Dl) if d > 2 and IIh(G,) = (jlfot(G)IIlogN) if d = 2. Summing over

the log N levels yields Lemma 3.3.6. 0

All that now remains for us to do is account for the cost of the edges hooking together

the h(Gi)'s and we will have an upper bound on the cost of the embedding h(G). We

put in these connecting edges in log N steps. The i th step consists of putting in all

3.4. RUNNING TIME ANALYSIS :39

edges which extend from G, to G, where j > i. These edges are contained in S, and by

Observation 3.3.2 there are 0(,7(,)) of them. The cost of connecting Gi to G, is
/ / d-Ithen-(0 (2) -)i(ii.' 1 (d--) "Ilthen 0 (1 d' (N12))= 0 , 2'-' liof0 t(G)l) = 0

For j = i,. .. , i + d this sequence is geometrically decreasing when d > 2. Hence. the

total cost of the ith level interconnecting edges is O(Ijfo,(G)II). Summing over all I

levels, we see that these interconnect edges add at most O(Ijfpt(G)f log N) to the

total cost. This finishes the proof of the most fundamental result in Part 1: Theorem

1.2.2.

3.4 Running Time Analysis

We can implement an algorithm to find the nested rectangles by drawing vertical and

horizontal lines to remove the required fraction of points from the margins and then

incrementally shrinking the size of the resulting rectangle to capture the exact number

of points needed. This will require us to sort the points once by x coordinate and

once by y coordinate. After sorting, each region Si can be found in O(,) time. Hence

we can compute S1 C S2 C ... C S1ogN+1 in O(NlogN) time. Computing the map

h : G -- P is accomplished by calling the divide and conquer subroutine to map each

Gi int-, Si. Let T(Mi) be the running time for this subroutine on the 1,-node gid

Gi. If we start by sorting the Mi points by x coordinate and by y coordinate, at the

th level we can then split each region B. in O(2-) time. Hence, if we assume the .I,

points are first properly sorted: T(M,) = O(Mi) + 4T(-') = O(M, log M,). Adding

in the initial sorting time. we still have T(M) = O(Mi log Mi). Then summing over

all Gi, where Mi = we see that h can be computed in O(N log N) time.

40 CHAPTER 3. D-DIMENSIONAL GRIDS

Chapter 4

Arbitrary Weighted Graphs

We now turn to the case where we wish to embed an arbitrary weighted graph G in

R d. As indicated, we are able to give polynomial time approximation algorithms for

this problem in the cases where P is an array of points (Theorem 1.2.3) or a randomly

chosen uniform distribution of points (Theorem 1.2.4).

4.1 Embedding into an Array of Points

This section provides the proof of Theorem 1.2.3.

Theorem 1.2.3 There exists a polynomial time algorithm which, when given an

arbitrary N-node weighted graph G and a d-dimensional array of N points P in Rd ,

embeds G in P with cost within an O(log2 N) factor of optimal.

In this section, we assume that the points P are arranged in an evenly spaced

d-dimensional square array in Rd. Let G = (V, E) be an arbitrary weighted N-
node graph with edge weights w(e) for each e E E. A 1 k-I

decomposition of V into disjoint sets U and W such that min(IIUII, JIWI!) > . Let

S be the set of edges that join points in U to points in W. Then we define the cost

of the separator to be 11Sf! = XeES w(e). Leighton and Rao [381 have recently given

41

42 CHAPTER 4. ARBITRARY WEIGHTED GRAPHS

an approximation algorithm for finding minimum cost separators. We will use the

following result from their paper.

Theorem 4.1.1 (Leighton, Rao) There exists a polynomial time algorithm SEP
1 9seaaofr

such that given a weighted, undirected graph G, SEP finds a -L - 1 separator for

which has cost less than O(log N) times the optimal cost Z separator of G.8 8 eaao fG

We are now in a position to prove Theorem 1.2.3. We give the proof for the case

when P is a 2-dimensional grid of points. It is not hard to extend the ideas to handle

the general case where the dimension d is a constant greater than 2. Let OPT be the
set of edges crossing the optimal 1 - Z separator.

8 8eprt.

We proceed with a divide and conquer assignment of points in G to the square

array P. Consider the optimal embedding fpt : G -+ P. Let s be the side length of

the array P.

Claim 4.1.2 s = QO (IOPlf

Proof: Move a line perpendicular to one dimension of P from left to right across the

plane, until it splits off the leftmost 1 of the nodes in P. From this starting point.
continue to move the line across the array until it splits off Z of the nodes. At each

point in its traversal, the line cuts > IIOPTI edge weight from f0 nt(G). Since the line

moves distance Ls, Ifopt(G)Il > -LiIOPTI. El
1 9

Now use SEP from Theorem 4.1.1 to obtain a l0separator V = UUI of G

which has cost within O(log N) times IIOPTII. Let C be the set of edges joining U

and W. We can now write G = (U U W, E, U E2 U C). Again, move a line from left to

right across P and stop at the point where the line cuts off exactly IhUJ _ fL leftmost

points. (The line may contain a jog.) See Figure 4-1. Recursively embed (U, EI) and

(W, E2) in the left and right sub-rectangles of P defined by the line. Notice that since

at each level we are splitting sub-graphs of G with L -1 separators, as long as we
10 10

cut the sub-rectangles of P along their longest side, the aspect ratio of any rectangle

never exceeds 10 to 1. We measure the cost of this recursively defined embedding by

4.1. EMBEDDING INTO AN ARRAY OF POINTS 43

00000P00000000000000
0000 00000000000000
0000 00000000000000
0000 00000000000000
0000 00000000000000
0000 00000000000000
0000 00000000000000
0000 00000000000000
00 00 00000000000000
0000 00000000000000
0000 00000000000000

0000 00000000000000
00000 0000000000000
000000 0000000000000
000000 0000000000000
000000 0000000000000
000000 0000000000000:
0000000000000000000
000000 0000000000000
1000 0000 00000000 00000

Figure 4-1: Embedding G into a grid of points.

adding up the cost of the edges crossing cuts at each level. At the top level, the cost

of embedding C in P is bounded above by IICI~s < If0 pt(G)iI log N. To bound the

costs introduced at the lower levels, we will need a slightly more general claim.

Claim 4.1.3 Let s be the length of the longest side of an M-node sub-rectangle R

of P with aspect ratio bounded by some constant k. Then if (U, E1) is any Al-node

subgraph of G with optimal a or O o(f(U)I
8 1 spaatr OT,1

Proof: Move a line from left to right across P, starting where the line first splits off

of the points of f0 p(U) and stopping when it splits off the leftmost points. Let

the distance between these two cuts be 11. Repeat this process with a horizontal line

moving from the top to bottom of P, and let the distance measured this way be 12.

Then > If of the points of f0 pt(U) are contained in an 11 X 12 region. Hence since R is

roughly square, s = O(max(li, 12)). Now by arguments similar to those given above,

Ilf0pt(U)I ! lJJOPTJf for i = 1,2. It follows that s =_ O("1f-PtU").

To finish the proof of Theorem 1.2.3 consider the i level of recursion in our

embedding algorithm. Let P = P1 U ... U Pk. be the disjoint union of the points

contained in the k = 2' rectangular regions defined at this level. Let Pi have longest

side length si. Then let V = U1 u ... u Uk be the disjoint union such that U, is

44 CHAPTER 4. ARBITRARY WEIGHTED GRAPHS

embedded in Pi. Let OPT be the optimal I _ 7 separator of the subgraph of G

determined by U2, and let Ci be the edges crossing the - 9 separator found by10 10

SEP. Then the cost of the embedding introduced at level i is bounded above by

i= is < sj<OPTijIO(log N). By Claim 4.1.3 this sum is bounded above

by ,=, JIfopt(U)IjO(logN) 5 lIfovt(G)1lO(log N). Summing over all log N levels of

the recursion, the total cost of the embedding is jjfot(G)jIO(log2 N).

4.2 Embedding into a Randomly Distributed Set

of Points

This section presents the proof of Theorem 1.2.4.

Theorem 1.2.4 There exists a polynomial time algorithm which, when given an

arbitrary N-node graph G and a random set of N uniformly distributed points P

in Rd. with high probability embeds G in P with cost within an O(log2 N) factor of

optimal.

An algorithm similar to the one described above achieves an O(log 2 N) times

optimal embedding with high probability when the points P are randomly distributed
1 9seaao

in a square s x s planar region S. Again, we use SEP to find a good -0 - 2- separator

of G, split the planar region into appropriately sized pieces with a vertical line, and

proceed recursively to embed the two sub-graphs of G in these pieces. It is not hard

to show that with high probability Claim 4.1.2 still holds in the randomly distributed

case. Hence, the embedding cost generated by the cut at the top level of the algorithm

with high probability is O(lflpt(G) I log N).

All that is needed at this point is a probabilistic analog of Claim 4.1.3. So suppose

we are at the ih level of recursion, and we are embedding some M-node subgraph

(U, Ej) of G into a sub-rectangle R of the plane with longest side length r. As in

Claim 4.1.3, consider the M points of fop,(U) contained in an 11 x 12 region. It still

4.2. EMBEDDING INTO A RANDOMLY DISTRIBUTED SET OF POINTS 45

holds that IJfop,(U)I - lillOPTJ for i = 1,2. We simply need to show that with high

probability r = O(max(II, 12)).

For this, we will need to prove some preliminary probabilistic results about uniform

distributions of points in the plane. All of these results use standard Chernoff bound

analysis. See Section 7.5.1 for a review of Chernoff bounds.

We call a sub-region R of the s x s square S an r, x r2 sub-rectangle if the sides

of R are parallel to the sides of S and the lengths of its sides are rl and r2 . The

expected number of points lying in R is Ep(R) = 32

Lemma 4.2.1 Fix 1 and w. Then there exists a constant A such that for all N with

high probability no sub-rectangle R with shortest side length r, such that w < r, < 2w.

longest side r 2 such I < r2 < 21 and area > log N contains more than 14Ep(R) or

less than -LEp(R) points.

The proof of Lemma 4.2.1 will use the following claim:

Claim 4.2.2 Fix a region R in the square S and a constant c. Then there exists

a constant A such that for all N if the area of R is > ,_
2 IgN then with probabilityN

> 1 - N - c, R contains < 2Ep(R) or > !Ep(R) points.

Proof: Let q be the probability that a point lies in R. Then using well known

Chernoff bounds [42] we know that Prob[R contains < 2Ep(R) or > !Ep(R) points]

< e -
,

qN for some constant 3. Now we may pick A sufficiently large so that q > N

where a is large enough so that e- o 0Irog N < N-c. El

Proof of Lemma 4.2.1: The lemma is vacuously true if lw < o(2 N), so

we may assume that lw > fp(2 ""N) and 1 < O(o-). We proceed to show that

very few rectangular regions R are either so dense or so sparse that they violate the

conditions of Lemma 4.2.1. We will handle the case where R contains more than
$2

14Ep(R) points first. Divide S into 1- sub-regions of size I x w in two ways. One way.

the length 1 side is horizontal, and the other way it is vertical. See Figure 4-2 Then

46 CHAPTER 4. ARBITRARY WEIGHTED GRAPHS

Figure 4-2: Divide the square region into 1 x w sub-rectangles in two ways.

R lies inside some 3 x 3 block of these sub-regions. There are less than 22- of these

1w

blocks. So the probability that R contains > 14Ep(R) points is < 2 < 0()N

times the probability that some fixed 3 x 3 block contains > 14Ep(R) points. Let

B be some such fixed block. But the expected number of points for such a block is

E'= 9wN. So 14Ep(R) > 2E'. But, Prob[number of points in B > 2E'] _< N-' by

Claim 4.2.2. Hence Prob(some R contains > 14Ep(R) points] < N - (c 1).

Now consider the case when R contains less than AEp(R) points. Divide S into

932 1 1 x 1w sub-regions. Then some sub-region lies inside of R. So the probability

that R contains < -LEp(R) points is < the probability that some one of these small

regions S' contains < -- lvr ' points. But Ep(S') = _2g, hence this probability is <

the probability that S' contains less than ,!Ep(S'). Once again, by the above claim.

the probability that a fixed S' contains < Ep(S') is < N-c. Hence Prob[some R

contains < -Ep(R) points] < N-(c- I). 0

We can now prove the stronger Lemma 4.2.3 which holds for any sufficiently large,

bounded aspect ratio sub-rectangle:

Lemma 4.2.3 There exist a constant A such that with high probability no sub-

4.2. EMBEDDING INTO A RANDOMLY DISTRIBUTED SET OF POINTS 47

rectangle with area > As'og \ contains more than 14EP(R) or less than -E,(R)N i

points.

Proof: Let R be a sub-rectangle satisfying the assumptions of the lemma. Let r,

and r 2 be the lengths of the shortest and longest sides of R. Divide the ranges of

possible values for r, and r2 up into sub-intervals of length -. Each pair of sub-

intervals corresponds to a pair of values for I and w in Lemma 4.2.1. There are

at most N 2 such possible pairs of values. Notice in the proof above that A does

not depend on 1 or w, so we may pick some constant A to suffice for all and yield

probability < N - ('+2). Since there are < N2 sub-interval pairs, the probability that

any R violates the conclusion of Lemma 4.2.3 is < N -C. E3

Lemma 4.2.4 With high probability, any sub-rectangle R generated during our recur-

sive embedding procedure has aspect ratio bounded above by some constant k whenever

R contains > A log N points.

Proof: We proceed by induction on the construction of rectangles. Lets say we start

with some rectangle R' which has aspect ratio < k and contains M points of the

distribution within its area. We are going to split its points better than -L - - with
10 10

a line perpendicular to its longest side. What is the probability that -L of its points
10

are squashed up into some sub-rectangle R with aspect ratio > k? See Figure 4-3.

When such a squashing occurs, we have > - of the points in R' packed into < 1

of the area of R'. Let E-(R) - be the expected number of points in the

rectangle R. From Lemma 4.2.3 we know that with high probability R' has area

< 18As 2 . This implies that there are Y6 points in a sub-rectangle of size -- 2, For

k > (18)(10)(14) this violates Lemma 4.2.3. El

We now return to our original goal: proving that the recursive embedding algo-

rithm using SEP generates near optimal embeddings with high probability given a

uniform distribution of points. We left off at the ith level of recursion. At this level,

we wish to embed some Al-node subgraph (U, E1) of G into a sub-rectangle R of the

48 CHAPTER 4. ARBITRARY WEIGHTED GRAPHS

Figure 4-3: A bad distribution of points leads to high aspect ratio rectangles.

plane with longest side length r. The Lf points of fop,(U) are contained in an 11 X 12

region R. We need to show that with high probability r = O(max(li, 12)). N'ow if

it is not true that r = 0(max(ll, 12)), then R is a sparsely populated rectangular

1 2

region with area > -Ir 2>> 1112 which contains only M points. But the 1112 region

also contains > I points. When M > Ak log N these conditions violate Lernma 4.2.3.

2S

Now we must handle the case where M < A log N. Let us alter the algorithm used

for embedding arbitrary graphs in arrays so that when regions reach size < A log N we

stop. Then we have sub-divided V = U, ..-. U Uk such that 11 Ujl 1_<! A log N. Further-
more. each U, is contained in a region with diameter < 0 {ll/2'(U,)ll) < -lo,(,l)

-- IIOPTIII) --0 If-tU)I

Hence we can embed the remaining subgraphs into their regions any way we want

With Cost < E, jlfoPt(U,)llA2 log2 N < O(llfopt (G)II log 2 N). Therefore, with high prob-
ability, the total cost of the embedding is O(llfop,(a)Jl log 2 N). ll

Chapter 5

Applications to Parallel

Processing

Several important practical problems in parallel processing concern the efficient em-

bedding of large computational problems into parallel architectures. We consider a

distributed model of parallel computing where a parallel algorithm is composed of

a set of processes. Each process performs a certain set of computations and sends

and receives data from other processes. To avoid confusion of processes with pro-

cessors, we will sometimes refer to processes as tasks. We define the computation

graph for an algorithm to be the graph which has one node for each process and edges

between nodes whose processes exchange data. In some cases, we may consider the

weighted computation graph in which edge weights represent the relative amount of

communication carried by each edge. Examples of algorithms and their corresponding

computation graphs include:

1. Circuit simulation. Each node of the computation represents a device in the

circuit with edges between devices which exchange electrical information.

2. Numerical methods for solving differential equations. Various finite difference

methods yield grids, cubes, and other computation graphs for numerically solv-

49

50 CHAPTER 3. APPLICATIONS TO PARALLEL PROCESSING

ing differential equations.

3. Fast Fourier transform. The natural computation graph is the butterfly.

A problem which arises naturally in this context concerns how to assign an algorithm's

tasks to a machine's processors and efficiently embed the computation graphs for these

algorithms into the parallel architecture. Our geometric embedding results address

this problem by providing algorithms for assigning tasks to processors for a large class

of machines: array-based parallel processors.

5.1 Minimizing Communication Load

We measure the efficiency of an embedding in a parallel architecture in terms of

the communication load which that embedding induces on the interconnect network.

Communication load is the total volume of inter-processor communication carried by

the interconnect network on the architecture. For any given parallel algorithm, this

load may vary dramatically depending upon how tasks are assigned to processors.

Let in,..., Mk be the messages which must be exchanged between processors dur-

ing the algorithm. Then if d(m) is the distance traveled by a message through the

interconnection network. the total communication load is simply: Fi d(mi). In this

manner, communication load is a measure of the total volume of traffic the network

will be required to bear during the algorithm.

As an illustration, consider a parallel processing problem represented as a graph

on a set of tasks: t1 ,. .,tk. The weight of an edge in this graph represents the

amount of communication required between tasks tj and ti. See Figure 5-1. We

need to optimally assign these tasks to processors in a manner which minimizes the

communication load on the network. For example, if we are interested in running a

circuit simulation, then each task t, would correspond to a device in the circuit and

we would need to minimize communication load induced by simulating the electrical

signals transmitted between devices.

5.1. MINIMIZING COMMUNICATION LOAD 51

Figure 5-1: Computation graph for a problem to be solved on a parallel machine.

Our results on weighted graph embeddings allow us to give a provably near-optimal

approximation algorithm for minimizing communication load on array-based parallel

processors. Here we understand an array-based architecture to mean any N-node grid.

cube, or higher dimensional array. As a corollary of Theorem 1.2.3 we can embed any

weighted computation graph in an array-based machine minimizing communication
load to within an O(log2 N) factor of optimal.

Corollary 5.1.1 There exists a polynomial time algorithm which, when given an N-

processor array-based machine 5pg and a parallel processing task consisting of a set

of tasks t,.... tN with communication costs c(to, t,) between tasks, can compute an

assignment of tasks to the processors of which achieves a communication load

which is within O(log 2 N) times optimal.

Proof: In a k-dimensional array-based processor, the distance between two processors

P, and p2 is dist(p1 ,p 2), where dist is the Manhattan metric in k-space. Within

constant factors depending on k. this metric is approximated by the euclidean distance

function. Let G = (V, E) be the complete graph on V = ti,..., tN with edge weights

c(ti, 1,). Then we simply need to solve the weighted geometric embedding problem of

mapping G into a k-dimensional grid. E

52 CHAPTER 5. APPLICATIONS TO PARALLEL PROCESSING

5.1.1 Simulating Other Architectures

Corollary 5.1.1 can also be interpreted as providing an algorithm for near-optimal

simulations of other architectures on array-based machines. An alternate architecture

can be represented as an N-node computation graph where nodes are processors and

edge weights represent the amount of traffic typically present on the link between two

processors. We can then use Corollary 5.1.1 to embed the alternate architecture in

the array-based machine in a manner which minimizes communication load to within

an O(log2 N) factor of optimal.

5.2 Dynamic Allocation of Resources on a Mul-

tiprocessor

Suppose we are given an N-processor parallel machine configured as a graph G =

(V, E) where I V 11 = N, and a schedule of problems to process: Pi, .. . ,Pk. Each

problem pi requires a certain number ni of processors. The machine's operating

system dynamically allocates processors to problems. As problems finish, holes of

idle processors open up in the network. How can we efficiently assign processors from

the holes to the remaining problems in a manner which minimizes the communication

load on the network? If each problem pi corresponds to a computation graph ci, this

problem consists of finding optimal embeddings of ci into the network holes. Using our

results from Theorem 1.2.4 on embedding weighted graphs into randomly distributed

points in euclidean space, we can show how to embed an arbitrary computation

graph C on n nodes into randomly distributed subsets of an array processor within a

O(log2 n) factor of optimal.

Corollary 5.2.1 There exists a polynomial time algorithm which, when given a k-

dimensional array processor M with n randomly distributed idle processors and a

computation graph C on n nodes, with high probability can assign nodes of C to the

5.2. DY.NA.MIC ALLOCATION OF RESOURCES ON A MULTIPROCESSOR 53

idle processors in a manner which minimizes the additional communication load on

Al to within an O(log 2 n) factor of optimal.

Given the large number of parallel algorithms devised for grids, cubes, hypercubes.

butterflies, and shuffle exchange graphs, we are frequently interested in problems p,

which have one of these graphs as their computation graph. For example, algorithms

for solving differential equations frequently have computation graphs which are grids.

cubes. or higher dimensional arrays. Fast Fourier transform and Batcher's merge sort

run naturally on the butterfly. In these cases, we can drop the assumption that idle

processors are randomly distributed, and give faster algorithms which always assign

processors in a near-optimal manner. In fact, when C is a hypercube, shuffle-exchange

graph. or butterfly. any processor assignment strategy is near-optimal.

Corollary 5.2.2 Given a k-dimensional array processor M with n idle processors

and a computation graph C on n nodes which is a uniformly weighted hypercube.

butterfly, or shuffle exchange graph, then any assignment of the nodes of C to the

idle processors creates additional communication load which is within an O(logn)

factor of optimal.

For grids, cubes, and higher dimensional arrays, our geometric embedding results

yield very fast approximation algorithms for the processor assignment problem.

Corollary 5.2.3 There exists an O(nlogn) time algorithm Thich, when given a 2-

dimensional array processor Al with n idle processors and a computation graph C

on n nodes which is an uniformly weighted, can assign the nodes of C to the idle

processors to create additional communication load which is within an

1. O(log 2 n) factor of optimal when C is a grid.

2. O(log n) factor of optimal when C is a cube, or higher dimensional array.

54 CHAPTER 5. APPLICATIONS TO PARALLEL PROCESSING

5.2.1 Wafer-Scale Integration and Reconfiguring Around

Faults in an Array-Based Processor

Now suppose we are given an array-based parallel machine with a number of faulty

nodes. Similarly, consider a silicon wafer with processors arranged in an intercon-

nected grid where some of the processors are faulty. We assume a model where

messages can still pass through a failed processor, but its processing capabilities are

dead. Then the live nodes correspond to a set of points P in the plane or Rd. For arbi-

trary faults, Theorems 1.2.2 and 1.2.1 yield algorithms for reconstructing a grid, cube.

hypercube. shufif, exchange graph, or butterfly on the live nodes with near-optimal

communication load. On the other hand, if the faults are randomly distributed, then

Theorem 1.2.4 yields an algorithm for embedding arbitrary architectures on the live

nodes with near-optimal communication load.

5.3 Configuring Large Area Distributed Comput-

ing Networks

Suppose we need to link together a number of widely dispersed computing centers

into a single network. For example, the weather service may need to configure a large

number of weather stations around the country into a single network for weather

prediction. We may wish to dynamically add and remove centers from this network

as time progresses. For example, if the weather service were tracking and analyzing a

storm, the stations in the network would be changing over time as the storm moved

across the country. In the case of such large area distributed networks, communica-

tion costs between centers will comprise a significant percentage of the total cost of

operating the network. If we assume that communications between centers will take

place over existing telecommunications channels, the operator of the network will pay

rates proportional to the distance traveled for each piece of communication. Hence

5.3. CONFIGURING LARGE AREA DISTRIBUTED COMPUTING NETWORKS.55

the operator would be interested in configuring the network so as to minimize the

total embedded edge length. Assuming that centers lie on the plane, this reduces to a

geometric embedding problem. Our results indicate how to produce near-optimal so-

lutions to this problem when the network is a grid. cube, hypercube, shuffle-exchange

graph, or butterfly. For other network topologies, we can achieve the same results

provided the centers are uniformly distributed.

56 CHAPTER 5. APPLICATIONS TO PARALLEL PROCESSING

Part II

Query-Retrieval

57

Chapter 6

Introduction

6.1 Overview of Query-Retrieval Results

Query-retrieval problems have received considerable attention in the computational

geometry literature [10, 13, 14, 15, 16, 18, 20, 24, 25]. Typically, a query-retrieval

problem consists of a set of n geometric objects (e.g. points in the plane), and an

unlimited .quence of queries (e.g. "of the n points in the plane, find the k points

that are closest to position (x, y)"). The task is to preprocess the n objects and devise

a data structure so that each query can be answered as quickly as possible.

The most important measures of efficiency in a query-retrieval problem are the

space required by the data structure and the time needed to answer each query. For

example, typical query-retrieval problems require Q(n) space and fl(k + logn) time

per query where k is the size of the response to the query. The algorithms and data

structures described in this part of the thesis all achieve the optimal time bound and

use O(n) or 1(n log n) space, depending on the problem being solved. Preprocessing

time and space (used to construct the data structure) are also of concern, but are

usually not as important as data structure space and query response time. All of the

algorithms described in Part II of this thesis use polynomial preprocessing time and

space. Using probabilistic methods, the preprocessing time and space can be reduced

59

60 CHAPTER 6. INTRODUCTION

to 0(n log 2 n).

6.2 Main Results

In this part of the thesis, we describe a new technique for solving query-retrieval

problems in optimal time with optimal or near-optimal space. The technique incor-

porates planar separators, filtering search, and the probabilistic method to compact

kth-order Voronoi diagrams (and/or other suitable proximity diagrams) from k°(')n

space to O(n) space without losing any of the information that is essential for solving

query problems. As examples, we use the technique to construct algorithms and data

structures for k-nearest neighbor search. circular range search, and half-space range

search. A brief description of each of these problems and of our results is provided

below.

6.2.1 Planar k-Nearest Neighbor Search

Input: A set P of n points in the Euclidean plane E 2 and an integer k > 0.

Query: Find the k points in P that are closest to a query point q.

We show how to solve this problem using O(n) space and O(k + log n) time per

query. both of which are optimal. If k is not fixed, but is given as a part of the

query (i.e., the query is a pair (q, k) with q E E 2 and k < n), then our solution uses

O(n log n) space and O(k + log n) time per query. The best previously known solution

to this problem is due to Chazelle, Cole, Preparata, and Yap [15] who construct a

data structure using 0(n(log n log log n)2) space.

We also consider the k-nearest neighbors problem in some other non-euclidean

metrics. For example, we show how to construct data structures and algorithms with

equivalent performance in the power-distance metric and the additive-weight metric.

This metrics are defined and described in Section 7.1.2. Here we simply point out

that Voronoi diagrams in these alternative metrics are well known and have several

6.2. MAIN RESULTS 61

applications [6, 5. 7, S. 22. 20, 41, 43], but the k-nearest neighbor searching problem

in these metrics does not appear to have been studied previously. As an example

of the applications of these metrics, we use our technique for computing k-nearest

neighbors in the power-distance metric to solve the 3-dimensional half-space range

search problem.

In the special case that each query point q belongs to a restricted set Q of O(n)

points (e.g., Q = P), the query response time of our algorithms can be improved to

O(k) without increasing the space. This restricted searching result could be useful

in conjunction with heuristics for large traveling salesman problems that repeatedly

compute the k nearest neighbors of various cities along the tour [34]. For small

problem instances, it is possible to simply precompute the k-nearest neighbors of

every node and store them, thereby using O(kn) space. For large n, however, this

approach is not possible, and the techniques described in Part II of this thesis become

more appropriate. In this application, our approach uses O(n) space and O(k) query

time, both of which are optimal.

6.2.2 Circular Range Search

Input: A set P of n points in the Euclidean plane E2.

Query: Find all points of P contained in a disk in E2 with radius

r centered at q.

We show how to solve this problem using O(n log n) space and O(k+log n) time per

query where k is the number of points in the disk. Several algorithms for this problem

have been reported in the literature [10, 13, 15, 16]. The best previously known

algorithm (due to Chazelle, Cole, Preparata, and Yap [15]) uses O(n(log n log log n) 2)

space and O(k + log n) time per query. We transform the circular range search

problem into the planar k-nearest neighbors search problem and apply the filtering

search technique given in [13] to obtain the result.

62 CHAPTER 6. INTRODUCTION

If the centers of the query disks are known ahead of time and if the number of

centers is 0(n) then the query time can be improved to 0(k) without increasing the

space.

6.2.3 Half-Space Range Search in Three Dimensions

Input: A set P of n points in Euclidean space E3 .

Query: Find all points of P that are contained in the half space defined

by ax + by + cz < d.

We show how to solve this problem with 0(n logn) space and 0(k + log n) query

time, where k is the number of points found to be contained in the half-space. Previ-

ously, Chazele and Preparata [20] had given a data structure for this problem using

0(n log5 n log log4 n) space which was later improved to 0(n log2 n log log n) space by

Clarkson and Shor [24]. We transform the range search problem into the k-nearest

neighbor search problem in the power-distance metric and use filtering search to ob-

tain our solution.

6.3 Outline of Part II

The remainder of Part II is divided into three sections. Chapter 7 presents our

compaction technique by constructing an 0(n)-space data structure for k-nearest

neighbor search in the Euclidean plane. Initially a randomized construction is given.

and later (in Section 7.8) we show how to use the probabilistic method [42] to give

a deterministic construction. We also indicate how the compaction technique can be

applied to nearest neighbor search problems in other metrics. Section 7.10 briefly

illustrates how we can build a linear data structure for k-nearest neighbor search

with significantly improved preprocessing time by re-introducing some randomness

into the deterministic construction. Finally, Chapter 8 discusses applications of the

compaction technique to circular range search problems in the plane and half-space

6.3. OUTLINE OF PART 11 63

range search problems in three dimensions. We conclude this chapter with a broad

generalization of the technique and suggest applications to other retrieval problems.

64 CHAPTER 6. INTRODUCTION

Chapter 7

Voronoi Diagram Compaction

7.1 Review of Voronoi Diagrams

The importance of Voronoi Diagrams in computer science and other fields has long

been recognized [1, 6, 36]. Here we give a brief overview of the properties of Voronoi

diagrams in the euclidean plane and other metrics which are important to the results

proved in this thesis. Throughout this section we let P = pi,.. . , p,, be a set of points

in the plane which are in general position.

7.1.1 The Euclidean Plane

For any pair Pi,Pj E P, let h(pi,pj) be the half-plane containing pi which is defined

by the perpendicular bisector between pi and pj. Then the Voronoi diagram defined

by Pl, . .. , p,, is the partition of the plane into convex regions R(pl),. . ., R(p) where

R(p1) = fjli h(p1 ,pi). In this manner, the boundary edge between any two convex

regions in the Voronoi diagram is a segment of a perpendicular bisector between two

points p, and pj. R(pi) consists of those points in R2 which are closer to pi than

any other point p, E P. Likewise, the kth-order Voronoi diagram for Pi,.... Ip is

the partition of the plane into convex regions R(T) where T = pil,..., pi is any

subset of k points and R(T) = nPET,qEP\Th(p,q). R(T) consists of all points in

65

66 CHAPTER 7. VORONOI DIAGRAM COMPACTION

the plane whose k-nearest neighbors are exactly T. Similarly, the boundary edge

between any two convex regions in the kth-order Voronoi diagram is also a segment

of a perpendicular bisector between two points pi and pj. This yields the following

observation:

Observation 7.1.1 Whenever R(T) and R(S) are adjacent faces in the kth-order

Voronoi diagram. T and S differ in exactly one point.

Proof: Let s and t be the points whose perpendicular bisector defines the common

edge between R(T) and R(S). WLOG suppose that R(T) C h(t,s) and R(S) C

h(s, t). Then s E S and t E T so S and T differ in at least one point. Now suppose

that S and T differ on another pair of points s' and t'. Then R(S) C h(s, t) f h(s', t')

and R(T) C h(t, s) fl h(t', s'). But h(s, t) fl h(s', t') and h(t, s) O h(t', s') do not share

a common edge. Ve have a contradiction and S and T must differ in at most one

point. El

Along with the above observation, this thesis uses the following well known prop-

erties of the kth-order Voronoi diagram V:

1. V is a planar graph with O(kn) edges and faces. [36]

2. V can be computed in O(k 2n + nlogn) time. [1]

7.1.2 Other Metrics

In this thesis, we also apply the compaction technique to solve query-retrieval prob-

lems in other metric spaces. In particular we address the power-distance metric and

the additive-weight metric. Power-distance and additive-weight metric Voronoi dia-

grams are well known and have several applications [5, 6, 7, 8, 20, 22, 41, 43]. Below

we give a brief introduction to the properties of Voronoi diagrams in these metric

spaces which are important to the results appearing in this thesis.

7.1. REVIEW OF VORONOI DIAGRAMS 67

The Power-Distance Metric

In the power-distance metric, a weight wp > 0 is provided with each point p e P.

The distance between p and q is defined to be pow(p. q) = d(p, q) 2 _ w2 where d(p, q)

is the euclidean distance between p and q. The following geometric interpretation

can be given to pow(p, q): Let L be the line through q that is tangent to a disk with

radius wp and center p. Then V'pow(p, q) is the length of the segment between q and

the point on L tangent to the disk. Given two points p, q E P, the locus of points

with equal weighted distance from both p and q is a straight line. Hence. the concept

of kth-order Voronoi diagram generalizes nicely to this metric. Aurenhammer [5, 6]

and Edelsbrunner [27] discuss some properties of kth-order Voronoi diagrams in the

power-distance metric, and they call these diagrams kth-order power diagrams. The

properties that are most important to us include the facts that the edges defining the

kth-order power diagram are straight lines and that the diagram contains only O(k2 n)

faces. We discuss these diagrams in more detail in Section 8.2.

Weighted Metrics

In the additive-weight metric, the distance between p and q is defined to be d(p, q)+wp.

The kth-order Voronoi diagram for this metric (called a weighted Voronoi diagram) has

only O(kn) edges. Rosenberger [411 and Ash and Bolker [4] have shown that such dia-

grams can be computed in O(k2 n log n) time using O(kn) space. The edges bounding

the regions of kth-order weighted Voronoi diagiams are second degree curves. [41] As

it turns out, we are able to apply our compaction techniques to the k-nearest neigh-

bors problem in the additive-weight metric. This serves as an example to illustrate

the fact that the techniques presented here, and fully developed for the euclidean

metric, can be extended to other metric spaces.

68 CHAPTER 7. VORONOI DIAGRAM COMPACTION

7.2 Planar Point Location

In the construction of our data structure for query-retrieval problems, we use a planar

point location data structure due to Kirkpatrick. [35] The planar point location prob-

lem assumes a coordinate embedding of a planar graph (such as a Voronoi diagram)

in R 2. If the graph has n edges then we can build a data structure which can answer

the following query in O(logn) time: which face of the planar graph does the query

point lie in ? Kirkpatrick's planar point location data structure requires only O(n)

space and can be constructed with O(n log n) preprocessing time.

A different planar point location technique is given by Edelsbrunner, Guibas. and

Stolfi [28]. This technique also achieves linear space and logarithmic time planar

point location. It has the advantage over Kirkpatrick's technique in that it can be

generalized to to solve point location problems in sub-divisions of the plane that are

defined by curved edges such as hyperbolas. The fact that we are able to do optimal

time and space planar point locations in sub-divisions defined by curves is important

in latter sections of this thesis where we extend our compaction techniques to Voronoi

diagrams in non-euclidean metric spaces.

7.3 The Voronoi Diagram Compaction Technique

At this point, we are ready to present the main results of Part II of this thesis.

Let V be the triangulated kth-order Voronoi diagram for a set P of n points in the

plane under the standard L 2 (euclidean) metric. We assume that the points of P are

in general position. Then V is a planar graph with O(kn) edges and O(kn) faces

[361. Using Kirkpatrick's results [35] on planar point location, it is well known how to

preprocess V to answer k-nearest neighbor queries in O(log n+k) time. Unfortunately.

the resulting data structure occupies O(kn) space. In this section we construct an

optimal data structure using only O(n) space which achieves the optimal O(log n + k)

time bound for answering k-nearest neighbor queries.

7.4. PLANAR SEPARATOR TECHNIQUES 69

7.4 Planar Separator Techniques

We begin by taking the dual of V: f. Since the points are in general position. f" is

a planar. degree 3 graph with O(kn) edges and nodes. A node v of 1V corresponds

to a region of the plane. Any query point in this region has the same set S,, of k-

nearest neighbors in P. It follows from Observation 7.1.1 that whenever v and w are

adjacent nodes in V, S, and S, differ in at most one point. For each edge e = (v, w)

in f/, label e with the set of points Le = S, l S,. So L, contains either k - 1 or k

points. Now fix a point p E P and consider the faces of V which contain p in their

list of k-nearest neighbors. These faces correspond to a set of nodes in V. Let (V")p

consist of these nodes, together with the edges e such that p E L,. Then we have the

following observation:

Observation 7.4.1 For all p E P, (f/)p is connected.

Proof: Consider a node v E (')p and the corresponding face F, in V. Draw a

straight line from any point in F, to p. Moving along this line, we are always getting

closer to p, so each face of V which we pass through contains p as one of its k-nearest

neighbors. Furthermore, since they are adjacent, these faces which the line passes

through correspond to a connected subset of nodes in (V)p. Let w be the node in

(V)p whose corresponding face in V contains p. Then we have shown that v is in the

same connected component as w for all v E (V)p. E

At this point, we would like to partition V into groups containing - k6 nodes.

Each connected component of a group will then correspond to a contiguous group

of faces in the triangulated Voronoi diagram. Using the Lipton-Tarjan planar sepa-

rator theorem [39] , we can split V in half by removing O(v/k-n) edges. This can be

accomplished in O(kn) time. Continue to apply the separator theorem, at each level

splitting the existing groups in half until the point is reached where groups contain

k6 nodes. At this poir" O(-a-) edges will have been removed and we will have

used O(kn iog(")) time running the planar separator algorithm. Let f',..., l' be

70 CHAPTER 7. VORONOI DIAGRAM COMPACTION

0

Figure 7-1: The triangulated Voronoi diagram V with darker edges defining 1"1, ... , Ii

the resulting 1 = O(') pieces of V(/. Then define Pi to be the union of the S, such

that v E l4.

Observation 7.4.2 For any query point q, the k-nearest neighbors of q are com-

pletely contained in some Pi.

Proof: Let F be the face in V which contains q and Vq be the corresponding node

in the dual f/. Then vq E f/i for some i and the set of k-nearest neighbors to q is

SvqC P, E

For all i, let V be the region of the plane defined by . See Figure 7-1. Notice

that collectively there are at most O(') connected sub-regions among the regions

V1,..., Vt. These connected sub-regions are defined by the 0(-) edges of V' that

are removed during the planar separator process and any Vi may be the union of

numerous connected sub-regions. Using Kirkpatrick's planar point location algorithm

[351, preprocess this set of edges to create a data structure which on input q, can

locate the region Vi containing q. Call this the locator tree for V1,.. . , V1. This tree

has space linear in the number of edges needed to bound the V's. Furthermore. since

Kirkpatrick's planar point location data structure on m regions can be computed

in O(m log m) time, the locator tree can be constructed in O(a logn) preprocessing

time.

Observation 7.4.3 The locator tree uses only 0(fn) space.

7.4. PLANAR SEPARATOR TECHNIQUES 71

Locator r e

P P2 P3 P4 P5

I Inear wear ti-ar) lnear Ifnear
structure strcture structure structure structure

Figure 7-2: Linear structures for the P,'s give a linear structure for P

Proof: Each boundary edge of a region Vi corresponds to a removed edge in the dual.

We have removed at most 0(') edges. El

Once we have located the 1I which contains q, we need only search Pi to find

the k-nearest neighbors of q. Since Pi was defined from - k6 sets of points S, for

v E 1(i, and each S, contains k points, [IPil[< k. Hence by traversing the locator

tree in O(log n) time, we can reduce the original query problem to one of finding the

k-nearest neighbors out of a set Pi with only O(kV) points. At this point, one should

notice that the sets Pl,..., P are not pairwise disjoint. In fact, we have - !- Pi's.

each of size 0(k 7), and a naive analysis would suggest that O(kn) memory is required

to store the Pi's. In order to obtain an O(n) upper bound on the size of the data

structure we are building, it is necessary to give a strict upper bound on the number

of duplications of points which occur among the Pi's. Toward this end. we show that

the total number of points, counting duplications, which need to be stored in the data

structure is bounded above by (1 + O(.!))n:

72 CHAPTER 7. VORONOI DLAGRAM COMPACTION

Lemma 7.4.4 2-=1 11Pill (1 + O(j))n.

Proof: We begin by assigning each point p E P to the node vp E fV whose

corresponding face in V contains p. Now we argue that the number of duplicates of

points in P which are contained in the Pi's is bounded by k times the number of edges

cut during the planar separator stage of the construction. Let x E Pi. Then x E S,

for some v E 1/. So v E (f/), which is connected by Observation 7.4.1. Then either

(V), is completely contained in Vi (and x occurs uniquely in P) or else an edge e of

(1V)X was cut during the construction of 1K (i.e., a node of 1K must be incident to a

cut edge e for which x E L,). Since L, contains at most k points for any e and at

most O(.) edges e have been cut, the total number of duplicate points in all of the

Pi's is O(2).

7.5 Probabilistic Techniques

Each of the sets of points P, will now be treated separately. It follows from Lemma

7.4.4 that by creating a linear size data structure for k-nearest neighbor queries on

each P,. we can build a linear size data structure for k-nearest neighbor queries on

P using the locator tree discussed above. See Figure 7-2 for a picture of such a data

structure.

7.5.1 Review of Chernoff Bounds

Many of the results in this section use mathematical theorems for bounding the tail

of a binomial distribution. These results are referred to loosely as Chernoff bounds

and can be found in many sources [3, 21, 30, 42].

Let X 1 .. . , Xk be independent 0 - 1 random variables with probability q of being

1. Then let X = t X,, and 9 > 1. We would like to bound the probability that '

exceeds its expected value qk by more than a factor /3. The following result is a well

known Chernoff bound and can be easily derived using moment generating functions.

7.5. PROBABILISTIC TECHNIQUES 73

Lemma 7.5.1 Pr[-y >_ /qk]:< exp((0 - 1 - 3In O)qk)

7.5.2 Assigning the P to Buckets

For each P create a set of s = k buckets B!,..., B . We assign the points of P

to these buckets with equal probability. That is, a point p E Pi is assigned to bucket

Bf with probability -- 2 k. Our intention is to search each bucket for the -- log 2 kk

nearest neighbors of q, and in this manner capture the k-nearest neighbors of q in

Pi. To do this, we need to show that for any q, the k-nearest neighbors of q are

evenly distributed among the buckets. Consider the kth-order Voronoi diagram on P,.

This diagram has m = 0(k) regions corresponding to all possible sets of k-nearest

neighbors to q. Call the corresponding sets of k points: C1,..., Cm the constraints.

We say that a constraint C, is satisfied if each bucket B!,..., B contains less than

log2 k + O(log2 k) points from C,.

Lemma 7.5.2 With probability _ 1 - . every constraint is simultaneously satisfied

by a random assignment of P, to the buckets.

Proof: This is a direct applications of the Chernoff bound given in Lemma 7.5.1:

Pr[x > i3qk] exp((,3 - 1 - f In f)qk) Choose a constraint C, = {fP,.. Pk } and for

I = 1 .k let X,= 1 if P1 E Bi. In this case q = 1 2k. We say that C, is satisfied if less

that log2 k + -f log2 k points from C, are contained in any one bucket. We will show

that -f can be chosen to satisfy the lemma. Now let 2 = 1 +, k" Then C is satisfied

if less than 3qk points from C, are contained in any one bucket. Since there are 0(k0)

constraints and 0(k) buckets, from the Chernoff bound given above, we conclude that

the probability that some constraint is not satisfied is less than k9 Pr[the number

of points from C, in bucket B' > log2 k + -y log2 k] < k'exp ((I3 - - in 3)qk) <

k9 exp(-!!2 +). Hence, in order to satisfy the lemma, it suffices to pick -1
2 +k ,4

such that V xp - - 1 1.) When k is sufficiently large, -y >! 4 is good
2 + 2 k

74 CHAPTER 7. VORONOI DLAGRAM COMPACTION

enough. -l

For each set Pi, assign the points randomly to buckets and then check all of the

constraints to see that they are satisfied. Lemma 7.5.2 tells us that with probability

> 1 - the assignment to Pi will check out on the first try. We can build the kth-order

Voronoi diagram on P in O(k 2IIp11i+IPII log(jIPII)) time (1, 361. By Lemma 7.5.2 we

expect to check at most 2 assignments in order to successfully divide Pi into buckets.

Hence the expected time to assign all of the Pi's to buckets is O(k 2n + n log n). Here

we have described a Las Vegas algorithm to divide up the regions Pi into buckets. The

assignments to buckets are guaranteed to satisfy all constraints, but the running time

of the algorithm is not guaranteed. However, with high probability this algorithm

will terminate in O(k 2 n) time. In the next section we show how to assign the Pi's to

buckets deterministically.

7.6 The Compacted Data Structure

At this point, we have a data structure which divides P up into sets P,..., P with

very little duplication of points. Given a query point q, we can locate the proper set

Pi which contains q's k-nearest neighbors in O(log n) time. Each P is further divided

up into buckets. We have to retrieve the log2 k + 4 log2 k nearest neighbors to

q from each bucket B ,.... B*. The idea now is to recursively build a data structure

for retrieving log 2 k + 4 logy k nearest neighbors in each bucket. At the bottom level.

where we are searching buckets for the c (a fixed constant which does not vary with

k) nearest neighbors of q, we simply construct cth-order Voronoi diagrams on the

points in these buckets and process these diagrams using Kirkpatrick's planar point

location techniques to get linear space, O(c) time structures for finding the c-nearest

neighbors to q. The c points retrieved from each leaf are stored in a global linear array

of possible neighbors for q. In what follows, we will show that at most O(k) points are

stored in this array. This array of O(k) points is guaranteed to contain the k-nearest

7.6. THE COMPACTED DATA STRUCTURE 75

neighbors of q. To find the k-nearest neighbors, we will begin by finding the kt -

nearest point, x, to q in this array in 0(k) time by using an order statistic algorithm

[12]. Then simply compare each point to x and keep those which are closer or equal

in distance to q. Notice that as the k-nearest neighbors algorithm traverses the data

structure we have constructed at the intermediate levels no points are inserted into

the array. Points are only retrieved and written to the array in the leaves, and points

are not passed recursively up the data structure. Once the entire structure has been

traversed, and all of the relevant leaves have been investigated, then the k-nearest

neighbors to the query point are eliminated from among those present in the global

array.

Below we give a careful analysis of the data structure to show that it occupies 0(n)

space. We also solve the necessary recurrence to prove that the structure reports a set

of 0(k) points containing the k-nearest neighbors of a query point q in O(log n + k)

time.

The data structure we have constructed is a tree with levels alternating between

locator trees and pointers to buckets. Notice that at level i of this structure we are

breaking up a search problem for ki neighbors into a number of new search problems
2i

for ki+l = log ki + 0(log ki) neighbors. Hence at level i, e(loglog... logk)2 is a

lower bound on the range of the neighbor searches being performed. Now notice from

Observation 7.4.3 that the locator trees at level i will occupy O(j --) space, where
kI

nj are the sizes of the buckets on level i - 1. By repeated applications of Lemma

7.4.4: Ej mj _ (1 + 1). .. (1 + -_)n. Hence, the total amount of space occupied by

the locator trees is: 0(f" + (in + ;,-)n+ -..) = 0(n) space. Since the(log k) 2 (log log k) 2

number of bucket nodes increases geometrically every other level, the space used to

store the bucket nodes is dominated by the space used to store the leaves of the data

structure. Each leaf holds a constant sized Voronoi diagram. Hence the total amount

of space used to store this structure is bounded by a constant times the total number

of points (including duplicates) which appear in the Voronoi diagrams in the leaves.

76 CHAPTER 7. VORONOI DIAGRAM COMPACTION

By Lemma 7.4.4 this number is O(((1 + 1)(1 + o-r)(1 + (oglogk)) ...)n) = 0(n).

The upper bound on running time for extracting the k-nearest neighbors is equal

to the time required to traverse the first level locator tree, plus upper bounds on the

times required to search recursively through the first level buckets:

T(n,k) _ a logn+ k , T(k7 log2 k + 4log k)log2 k

T(n,c) < ac

This can be solved by substitution using the following expression for T(n, k):

6k+6Q(1 + 4')k 6a(1 + 4 __1__4_)

crlo n+ 1 k +/og -/o log . c
a log n + log log log k + log log log k

Hence, we have T(n, k) = 0(logn + k).In the case that the query point q is

restricted to a set of O(n) points, then this time can be reduced to O(k). To see this.

let cl,..., cm be the possible values for q where m = O(n). Eliminate the locator

tree at the first level of the compacted data structure and replace it with an array

A(l ... m] where A j] contains a pointer to the node on the second level which handles

the set P, containing the k-nearest neighbors of cj. On input cj, begin traversing the

compacted data structure at the node indicated by the pointer A[j]. In the running

time analysis this replaces the a log n term with 0(1), and the recurrence for T(n. k)

now has solution 0(k).

Lastly, we must check that at most O(k) points are reported. Notice that points

are reported only in the leaves of this structure and are not passed up the tree and

filtered at each level. In fact, if we computed order statistics and filtered points at

each leL, ~t.- the resulting report time would have been f2(log n + k log* k). Implicit

in the recurrence given above is the fact that the superset of the k-nearest neighbors

collectively reported by the leaves has size at most: ((1 + 4)(1 + 4o ko)(1 +
7o.gk =elog logh

4~).)k = 0(k). To see this notice that at the first level we are neighbor
i/log log log kc

7.7. EXTENSIONS TO VORONOI DIAGRAMS IN OTHER METRIC SPA CES77

searching for log 2 k + 4 log' k points from each of .k buckets. So at the first level.

the number of points which are going to be reported is bounded above by (1+ '~ ~)k.

A similar argument adds an additional factor of (1 + 4) at the second level.
v/log log k

etc.

7.7 Extensions to Voronoi Diagrams in Other

Metric Spaces

The ideas used above to construct a linear-sized data structure for optimal-time k-

nearest neighbor searching are general enough to apply to Voronoi diagrams con-

structed using a wide variety of distance functions. In fact, it is clear from our dis-

cussion that the techniques work whenever the kth-order Voronoi diagram is planar

and contains O(k'n) edges and faces for some constant 3. The only problem may be

that the edges of a Voronoi diagram in an alternative metric may not be straight lines.

In that case, a straightforward application of Kirkpatrick's planar point location algo-

rithm will not be sufficient for the construction of the locator trees. However, in many

cases involving edges defined by curves, we may be able to use a planar point location

algorithm given by Edelsbrunner, Guibas, and Stolfi [28] and described in Section 7.2.

Given that the diagram has straight edges or that curved edges can be handled. we

can always apply the planar separator theorem to build a locator tree leading to sets

Pi containing O(k3+6) points. At this point, we will have O(k2 1+6) constraints im-

posed on the buckets for Pi. As in the L 2 case, these constraints can be satisfied with

high probability. The resulting data structure obtained by applying these techniques

recursively satisfies the same recurrences as above with slightly different constants.

Applying these ideas to non-euclidean Voronoi diagrams (such as those generated

by the power-distance metric or weighted metric with additive weights) is important

in the applications presented in Chapter 8. Note the the Voronoi diagrams for these

metrics have k"00) edges and the connectivity property described in Observation 7.4.1.

78 CHAPTER 7. VORONOI DIAGRAM COMPACTION

7.8 Removing Randomness from the Construc-

tion

To make the above construction deterministic, we use the well known probabilistic

method described in [42]. For each Pi, we will proceed by first assigning the points to

two buckets Bo and B 1. Then each of these buckets will be split into two buckets, and

then into four buckets, etc., until after log k - 2 log log k iterations the points of Pi

have been partitioned into buckets. During the initial iteration, the points of P,

are taken in some order PI, P2,... and assigned to B0 or B1 . The probabilistic method

allows us to ensure that each bucket ends up containing < + O(v'1T6T,) points

from each constraint Cj. Central to the methods in [42] for solving this problem is the

computation of the conditional probabilities: Pr[> i + 4V/Fi-lg points from C, are

assigned to B0 I Pi E BO,p 2 E B 1,... p,, E B 0]. Call this conditional probability Pr[

Cj I pi E B0 , P2 E B 1 ,.. ., P, E B 0]. Such a conditional probability can be computed

exactly as a binomial series with < k terms. We will come back to the problem of

computing the Pr[Cj I P, E Bo,p 2 E B 1,... ,p, E Bo]'s shortly. First, however, we

detail the probabilistic method used to assign the points.

Suppose that points Pi,... pm have been assigned to buckets B 0 and B in such a

manner that there still exists an assignment of the remaining points which does not

violate any of the constraints. We would now like to assign Pm+l to one of the buckets

in a manner which preserves the property that an assignment of the remaining points

exists which does not violate any of the constraints. So for each of the constraints.

Cj, effective in set P,, we compute the conditional probability for B = Bo' BI: Pr[C,

P, E Bo, P2 E B, I... ,,Pm E Bo, Pm+j E B].

By hypothesis, for either B = Bo or B = B1 (or perhaps both) the sum of these

conditional probabilities will be less than 1: J, Pr[C, !Pi E B0 ,p 2 E B1, p, E

B0 P,+ E B] < 1. To see this, notice that we have assumed as our induction

hypothesis that FIj Pr[C, I P1 E BO, P2 E Bl,.... pm E Bo] < 1. But Pr[C, I

7.8. REMOVING RANDOMNESS FROM TIlE CONSTRUCTION 79

p 1 E Bo,p2 E B,.p..mpr E Bo] !Pr[Cj pi E Bo-p2 E B,,...,p,, E Bo pm+i E Bo]

!Pr[Cj I pi E Bo, p 2 E B, . .. pm E Bo Pm+ E B 1]. Hence, 7 Pr[C, I P, E

Bo, p 2 E B,...,pm E B 0 pm+ C B0] + Z1 Pr[C. I pI E BO,p 2 E B1 . Pm E Bo

pm+l E B1] < 1. It follows that one of the two sums on the left hand side of this

inequality must be less than 1. In the base case, where none of the points have been

assigned to any buckets yet, Lemma 7.5.2 assures us that the initial sum will be less

than 1. We then assign Pm+, to a bucket which achieves a favorable set of conditional

probabilities. In the course of this process, we have guaranteed that each bucket gets

split roughly in half for log k - log log k levels. By construction, the maximum number

of points from any constraint C, in a given bucket at stage i obeys the following

recurrence: m, < - + O(V/mih log'k) where mo = k. It follows by substitution

that rri < 1 + O(V logk) for all i such that 2k - (log k). Hence, at the stage

numbered log(1 k), we have produced roughly equal sized buckets P1,.... Pk such

that each bucket contains at most log2 k + O(log kV1 T) points from any C,.

We now turn our attention to computing the conditional probabilities. Let u be

the number of points from C, which have not been assigned to buckets yet. Let

v = (+4yTrT-) - #(points from Cj that have been assigned to B0). Define c(u, v)

.Then P-[Cm Pi E Bo,P2E Bj,...Pm E Bo] =c(u,v).
2F-I= I)

To compute these conditional probabilities efficiently, it will suffice to precompute

all for u < k and l < k. Since (+I = U+1 (u)and (u)=I I - U-1+1 1I+1

, this precomputation can be achieved iteratively in 0(k 2) time. Iteratively

precompute all of the c(u. v) for all u < k, < v < k. We can then simply look up the

conditional probabilities, and each Pr[C, I P1 E Bo, P2 E B,... P, E B0] requires

0(1) time to lookup. The number of constraints active in P is bounded above by the

number of faces in the kth-order Voronoi diagram on P,: O(k1IP,11). Hence, there are

O(kffP,) active constraints. C, in P,. After precomputing all of the c(u.v), _, Pr[

SO CHAPTER 7. VORONOI DIAGRAM COM1PACTION

(p I p, E Bop 2 E B,. . . P, E B0] requires O(kjjP,II) to compute. This computation

is performed O(log k) times to assign all points to buckets. Hence, the total time

required to assign points to buckets is O(k log kjjPj)j + k2) = O(k log klPil). Ileh ce.

the en-ire assignment process for the first level of the structure takes O(k log kn) time.

At subsequent levels, we are building structures for the ki-nearest neighbor problem.

where k, = log2 ki + O(log2 k,) Hence, the bound O(ki log kin) for assigning points to

buckets at each level decreases more than geometrically fast.

7.9 Total Preprocessing Time

The total computation time for building the compressed Voronoi diagram is given by

the sum of the times for the following operations. The time given in each case is the

sum of the associated operations performed at every level:

1. compute all intermediary Voronoi diagrams: O(k 2 n + n log n) [1, 36].

2. compute planar separators to build P,'s: (kn log _') [39].

3. build all of the locator trees: O(n log n) [35].

4. A deterministic assignment of the Pi's to buckets: O(k 2 n log k) [Section 7.5].

5. A randomized assignment of the Pi's to buckets: O(k 2n + n log n) expected time
rSection 7.5].

At the ith level of the construction, we are dealing with ki-nearest neighbor

problems where k, = k and k1 +1 = log2 k + log? ki. (For convenience we desig-

nate k0 = n.) Since the kth order Voronoi diagram can be computed in O(k 2 n +

n log n) time, at the ith level computing the Voronoi diagrams for all the Ps costs

Zp, O(kjJP jj + IIPjIj log IIPjII) = Zp, o(k'flPjll + 11PII log k,- 1) = O(kn+n log k-_i).

Summing over all levels, we see that the total time spent computing Voronoi diagrams

7.10. A MONTE CARLO CONSTRUCTION S1

is O(k 2n + n log n). Likewise as we showed in Section 7.4, at level i the planar separa-

tors computed to break up Pj require O(kIIPjj log(ILi ,)) time to compute. Summing

over all i gives the bound stated above. Finally, we have shown above that the locator

trees at level i take time O('- log n) time to construct. Summing over all i gives a

total preprocessing time of O(n log n) for building locator trees.

The dominating term in the sum of these time bounds varies with k, but it is

clear that the construction can always be accomplished in O(k2 n log k + kn log n)

deterministic time or O(kn + kn log n) randomized time.

7.10 A Monte Carlo Construction

Using a monte carlo construction, we can build a compacted data structure with

O(n log2 n log log n) preprocessing time. For k < log n, the deterministic construction

has preprocessing time O(n log 2 n). For k > log n, the preprocessing time for the

above deterministic construction is dominated by the computation of Voronoi dia-

grams and the assignment of points to buckets at the one or two top levels. However.

when k > log n, we can discard the initial computation of Voronoi diagrams, and

assign points directly to buckets in a randomized manner. In what follows we show

that with high probability this approach builds a correct data structure for solving

the k-nearest neighbors problem in O(n log 2 n log log n) preprocessing time. Further-

more, each time we query this data structure we get a witness which tells us whether

or not the answer provided to our query is correct.

When k > log n, skip the initial planar separator stage, and at the first level

assign the points directly to k- buckets using O(n) time. As we demonstrated in
log ni

the previous analysis of probabilistic bucket assignment, with high probability, in or-

der to capture the k-nearest neighbors of q it suffices to report the O(log n) nearest

neighbors of q in each bucket. This can be accomplished using the above determinis-

tically constructed data structures requiring O(n log 2 n log log n) total preprocessing

82 CHAPTER 7. VORONOI DIAGRAM COMPACTION

time. Hence the total preprocessing time to build this Monte Carlo structure is

O(n log2 n log log n). If we use a randomized assignment of points with checking (as

presented in Section 7.5) at the first level, this time bound then reduces to O(n log 2 n).

Given a query q to this new data structure., keep track of the O(logn) points

reported from each of the first level buckets. We are certain that each bucket reported

correctly. Now let p1, . Pk be the final report from this new structure. If our top

level assignment of points to buckets is correct, there should be at least one point

reported from each bucket that does not make the final list pi,.. pk- These k
• ' log n

discarded points are our witnesses that the final list is correct. If all of the points

reported from some bucket are contained in the final list, then that bucket contains

more than log2 k + 4 log2 k of the nearest neighbors to q and the top level assignment

of points to buckets violates at least one constraint.

Chapter 8

Applications of the Compaction

Technique

8.1 k-Nearest Neighbor and Circular Range

Search

Given a set of n points in the E'clidean plane E2. and a fixed k. the technique given

in Chapter 7 provides an O(n) space data structure for computing the k-nearest

neighbors of a query point q. However, if k is not fixed, but rather given as a part

of the query, then we simply construct log n - log logn linear size data structures

D. DI, where the D, can be used to obtain the 2' log n-nearest neighbors of q.

These O(log n) structures occupy a total of O(n log n) space. Now, given a pair (q. k).

we simply compute the smallest j such that 2- > and use D o corpute the

2- log n-nearest neighbors of q in O(log n + 2- log n) = O(log n + k) time. From this

set of O(k + log n) neighbors. filter out the k-nearest in O(k + log n) additional time

by finding the kth order statistic x 12] and keeping the points which are as close to

q as x.

To solve the circular range search problem we also use the log n - log log n data

-,'I

84 CHAPTER 8. APPLICATIONS OF TIE COMPACTION TECHNIQUE

structures described abovc. Wn ,, ,, given a query disk with center C a n radius r, use

q to query D1, D2 ,... until some structure Dj provides output which contains a point

x farther than distance r from q. This is a straightforward application of the filtering

search technique introduced by Chazelle [131.

The central idea in filtering search is that the search and report parts of a query-

retrieval algorithm should be made dependent upon each other. In this manner, the

more points the algorithm is going to report, the longer it is allowed for searching.

We can see that considering D1 , D2 ,... in order is an effective means of balancing

searching and reporting in the circular range search problem. If, after searching D,.

we find that all points reported are still closer than distance r from point q, we then

know that the report part of the algorithm will run for at least Q(2i) time (to report

11(2') points) and hence we have enough time to search Dj+1 without degrading the

asymptotic running time of the algorithm.

Now, let j be the smallest index such that D3 outputs a point x outside the query

disk. Then the time to execute these j stages is simply: O(Fq=0(2' + 1)logn) =

O(2J logn + logn) = O(k + logn) since k = O(2j logn). Finally, search through the

2- log n points given by Dj and output those which are contained inside the query

disk.

8.2 Half Space Range Search and Power Dia-

grams

Recall that for the half-space range search problem in 3 dimensions, we are given a

set P of n points in E3 and a query half-space. \Ve are asked to report all points of

P that lie inside (or on the boundary of) this half-space. In this section. we show

how this problem can be transformed into a nearest neighbor search problem in the

power-distance metric. To begin, we show how to transform the range search problem

into a ray-stabbing problem using geometric duality [19, 29].

8.2. HALF SPACE RANGE SEARCH AND POWER DIAGRAMS 5

Geometric Duality

In the half-space range searching problem, we are given a set of points in 3-space

(ai, bi, cj) for i = 1 ... n. Then for each query half-space ax + y + yz > 1 we are

asked to return those points which are contained in the half-space or on its boundary.

Geometric duality defines that each point (ai, bi, ci) has a dual half-space given by

the equation aix + biy + ciz > 1. Similarly, the query half-space has a dual point

(a, /, -). Then we have the following duality result:

Observation 8.2.1 A point (ai, bi, ci) lies inside the half-space ax + 3y + Yz > 1 iff

the dual point (a. 3, y) lies inside the dual half-space aix + biy + c'z > 1.

Proof: Both sides of the "iff" are equivalent to: aai + fbi + "yci > 1. E

Such simple duality results have powerful consequence in computational geometry.

[19] For our purposes, Observation 8.2.1 indicates that the transformation from a half-

space range searching problem to a ray stabbing problem can be accomplished in 0(n)

time and space. After the transformation, we are given a set of half-spaces defined by

aix + biy + ciz > 1 for i = 1 ... n and a query point (a,/1, -y). Our algorithm should

report those half-spaces which contain this query-point.

Without loss of generality, rotate the coordinate axes so that none of the planes

defining our half-spaces is parallel to the z-axis. Each half-space now intersects the

z-axis. Define those half-spaces which contain a segment of the z-axis heading for

+oo to be upwardly oriented. Define the others to be downwardly oriented. We will

split these groups into two sets and treat them separately. This will cause us to

run the algorithm twice, once on the upwardly oriented half-spaces and once on the

downwardly oriented half spaces. Within a constant factor, however, this will not

affect our running time. So. without loss of generality, we will assume that all of

the half-spaces are upwardly oriented. Hence, if we consider a ray which originates

at point (a.3. -1) and extends downward to z = -ac running parallel to the z-axis.

the point (a. 3.) is contained in exactly those half-spaces whose boundary planes

86 CHAPTER 8. APPLICATIONS OF THE COMPACTION TECHNIQUE

the ray intersects. In this manner, we have transformed the half-space range query

problem into a vertical ray-stabbing problem.

In order to describe how to solve the ray-stabbing problem using kth-order power

diagrams we need to understand more about the relationship between power diagrams

and planes in euclidean 3-space.

Power Diagrams and Planes in 3-Space

Aurenhammer and Edelsbrunner [6, 5, 27] provide a correspondence between the

arrangements of planes in 3 dimensions and power diagrams in 2 dimensions. This

correspondence hinges on the notion of a k-set. Given a set of n planes in E', the

k-set is the locus of all points in E' that satisfy the following properties:

1. Each point in the k-set belongs to one of the n planes.

2. For every point in the k-set there are exactly n - k planes passing above it in

the vertical dimension (i.e., the positive z-direction).

Two points are said to be in the same face of a k-set if they lie in the same plane and

have exactly the same planes passing above them.

In the above definition of a k-set, we say that a plane lies above a point (a. b, c),

if for some positive A, the point (a, b, c + A) belongs to the plane. Notice that the

bounaary of a k-set is formed by the lines defining the intersection of pairs of planes.

Let A be a face in a k-set. Then we define the projection of A to be the image of

A projected onto a plane at z = -oc: {(x,y): (x,y,z) E A for some z}. Now fix

some k0 . It is not hard to see that the projection of all the faces of the ko-set gives a

division of the plane into convex sub-regions.

We now wish to establish a correspondence between the weighted points which

define a power diagram. and planes in 3-space. For proofs and more detailed ex-

planations of the results appearing below, we refer the reader to the work of Au-

renhammer and Edelsbrunner (6., 5. 26. 271. Recall that each point p, in the set of

8.2. HALF SPACE RANGE SEARCH AND POWER DIAGRAMS 87

points defining a power diagram has an associated weight: w(pi). Define a plane

7'(pi): z = 2(x, y)Tpi - p'pi + w(pi) where (x, y)Tpi is the dot product of (x, Y) and

(xi,yi) and pi = (xi,yi). Furthermore, for any two points pi,pj we define chor(pi,p.)

to be the locus of points equidistant from p, and pj in the power distance metric

with weights w(pi) and w(p.). It is not hard to see that chor(pi,p,) is a straight line.

Furthermore, we have the following observation:

Observation 8.2.2 The projection of'r(pi) n7r(pj) onto the plane is chor(pi2 p,).

In fact, a much stronger result can be proven. Consider the k-sets formed by the

set of planes F = 7r(PI), r(P2),. (p,). Then for a fixed k we have:

Theorem 8.2.3 The projection of the faces of the k-set of F onto the plane at

z = -oo is the kth-order power diagram on the points pl,...,pn with weights w(pj).

Furthermore, if 7r(ri) is the plane containing one of the faces A of the k-set, and

r(r2), ... , r(rk) are the planes below A, then the k-nearest neighbors to the points in

the projection of A are ra,.. ., rk.

Theorem 8.2.3 can be used to give an upper bound on the size of the k"h-order

power diagram. Since the maximum number of faces in a k-set in 3 dimensions has

been shown to be O(k 2n) (see Clarkson and Shor [24]), the number of edges in a

kth-order power diagram is O(k 2n). Consequently, if k is known ahead of time, then

our compaction techniques can be used to obtain an 0(n) data structure which can

be used to compute the k-nearest neighbors in the power metric in O(k + log n) time.

On the other hand, if k is not fixed, but given as a part of the query, then we can

construct log n - log log n linear data structures as in the previous section and obtain

the k-nearest neighbors of q in O(logn + k) time. Again, this structure requires

0(n log n) space.

Returning to the vertical ray-stabbing problem, Pi .. p, and w(pl),.. w(p,)

are the points and weights corresponding to the power diagram generated by the

projection of F. We are given a query point (a. 3, -), and are asked to determine the

88 CHAPTER 8. APPLICATIONS OF THE COMPACTION TECHNIQUE

planes that this point lies above. Let Di, D 2, ... , Dogn-lgogn be the compacted data

structures described above. First, we query D, with the point (a, 3) to determine the

log n-nearest points ri,..., rogn in the power-distance metric. This takes O(log n)

time. Then ir(ri),.. ., 7r(riogn) are the lowest log n planes which might appear below

(a, /3. -). We can then check each of these planes r(ri) in constant time to see if

(a,/5. .) appears above 7r(ri). At this point, we have still used O(log n) time. If all of

n r(r 1).... ,7r(riog,) appear below (a, 0, -y), then continue on to check D 2 and retrieve

the 2 log n nearest neighbors to (a, 3). Proceed in this manner, using the filtering

search techniques presented in the previous section. At some Di, we will find the first

plane , (r,) which lies above (a,/3, -y). At this point, stop and report all of the planes

from the set , ,(rlogn2,) which lie below (a,3, -). Let us say that k planes

are reported. Then the set of planes retrieved from Di has size at most 2k. Since at

a minimum Di gives us log n planes to search through, it is clear that this algorithm

runs in O(log n + k) time.

8.3 k-Nearest Neighbors in the Weighted Metric

Finally. k-nearest neighbor searching in the weighted metric (with additive weights)

can also be performed using data structures built from the compaction techniques

given in this paper. As described in Section 7.1.2, the kth-order Voronoi diagram for

this metric has only O(kn) edges. However, since these edges are defined by second

degree curves we cannot use Kirkpatrick's planar point location algorithm to build

the locator trees in the compact data structure. In this case, we use the planar point

location data structure given by Edelsbrunner, Guibas, and Stolfi [28] and described

in Section 7.2. With this change, the resulting compact Voronoi diagrams in the

additive-weight metric give the same optimal time and space complexity performance

for finding k-nearest neighbors as the euclidean structures. When k is fixed, the data

structure occupies 0(n) space and responds to queries in O(log n + k) time.

8.3. K-NEAREST NEIGHBORS IN THE WEIGHTED METRIC 89

8.3.1 Further Extensions of the Compaction Technique

The technique given in Section 7 for the k-nearest neighbors problem may have ap-

plications to other retrieval problems. For example, this technique can be modified

to obtain an 0(n) space data structure that can be used to solve a retrieval problem

in 0(k + log n) time for any class of objects with the following properties:

1. Each object in the class is a bounded or unbounded region of the plane and its

boundary is some Jordan curve.

2. If we consider any n objects in this class then the number of disjoint k-regions is

0(kn) (for some constant /3 > 0). We define a k-region as a connected region

of the plane such that any point contained in that region belongs to exactly k

objects. Furthermore, each k-region must be adjacent to at most 0(k) other

regions for some constant a > 0.

3. The partitioning of the plane into k-regions by the set of Jordan curves J

defining the n objects must satisfy certain point location properties: given any

sub-partitioning of the plane by some O(m) sized subset of J, there exists a data

structure of O(m) size which can perform planar point location in O(log m) time.

It is not hard to see that most geometric objects (circles, ellipses, polygonal curves

with at most a constant number of edges) satisfy these properties. Consequently, for

most of these problems, given a fixed value of k, we can obtain an O(n) data structure

that reports the 0(k) objects containing a query point q in O(logn + k) time. (If

more or less than 0(k) objects contain q then the structure would report the empty

set in 0(log n) time.) However, for all such cases, these results are not new since the

techniques given in [16, 17] can be used to obtain simpler 0(n) space data structures.

In a similar vein, we can use this technique together with filtering search to solve the

3-dimensional dominance reporting problem in O(n log n) space and 0(log n+k) time.

but again a simpler data structure that achieves the same space and time bounds has

been given by Gabow et al. [31].

90 CHAPTER 8. APPLICATIONS OF THE COMPACTION TECHNIQUE

Bibliography

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P.W. Shor. A linear time algorithm for

computing the voronoi diagram of a convex polygon. Discrete and Computational

Geometry, pages 591-604, 1989.

[2] A. Aggarwal, M. D. Hansen, and T. Leighton. Solving query-retrieval prob-

lems by compacting voronoi diagrams. In Proceedings of the 22nd Annual A0M

Symposium on Theory of Computing, 1990. to appear.

[3] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian

circuits and matchings. Journal of Computer and System Sciences, 18(2):155-

193, April 1979.

[4] P. F. Ash and E. D. Bolker. Generalized dirichlet tesselations. Geometriae

Dedicata, 20:209-243, 1986.

[5] F. Aurenhammer. Power diagrams: properties, algorithms, and applications.

SIAM Journal on Computing, 16:78-96, 1987.

[6] F. Aurenhammer. Voronoi diagrams - a survey. Technical report., Institutes for

Information Processing, Graz Technical University, Austria, 1988.

[7] F. Aurenhamrnmer and H. Edelsbrunner. An optimal algorithm for constructing

the weighted voronoi diagram in the plane. Pattern Recognition. 17:251-257.

1984.

91

92 BIBLIOGRAPHY

[8] F. Aurenhammer and H. Imai. Geometric relations among voronoi diagrams.

Geometriae Dedicata, 27:65-75, 1988.

[9] V. E. Benes. Optimal rearrangeable multistage connecting networks. Bell System

Technical Journal, 43:1641-1656, July 1964.

[10] J. L. Bentley and H.A. Maurer. A note on euclidean near neighbor searching in

the plane. Information Processing Letters, 8:133-136, 1979.

[11] M. W. Bern, H.J. Karloff, P. Raghavan. and B. Schieber. Fast geometric approx-

imation techniques and geometric embedding problems. Manuscript in prepara-

tion.

[12] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. E. Tarjan. Time bounds

for selection. Journal of Computer and System Sciences, 7(4):448-461, August

1973.

[13] B. M. Chazelle. Filtering search: a new approach to query-answering. SL4M

Journal on Computing, 15(3):703-724, August 1986.

[14] B. M. Chazelle. A functional approach to data structures and its ,"se in multidi-

mensional searching. SIAM Journal on Computing, 17(3):427-462, 1988.

[15] B. M. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap. New upper bounds for

neighbor searching. Information and Control, 68:105-124, 1986.

[16] B. M. Chazelle and H. Edelsbrunner. Optimal solutions for a class of point

retrieval problems. Journal of Symbolic Computation, 1:47-56, 1985.

[17] B. M. Chazelle and H. Edelsbrunner. An improved algorithm for constructing

kh-order voronoi diagrams. IEEE Transactions on Computers, 36:1349 - 1354,

1987.

BIBLIOGRAPHY 93

[18] B. M. Chazelle and H. Edelsbrunner. Linear space data structures for two types

of range search. Discrete and Computational Geometry, 2:113-126, 1987.

[19] B. M. Chazelle, L.J. Guibas, and D.T. Lee. The power of geometric duality. BIT.

25:76-90, 1985.

[20] B. M. Chazelle and F. P. Preparata. Half-space range search: an algorithmic

application of k-sets. Discrete and Computational Geometry, 1(1):83-94, 1986.

[21] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics, 23, 1952.

[22] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance

functions. In Proceedings of the 1st Annual A CAI Symposium on Computational

Geometry, pages 235-244, 1985.

[23] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman

problem. Technical Report 388, Carnegie-Mellon Graduate School of Industrial

Administration, Pittsburgh, PA, 1976.

[24] K. L. Clarkson and P. W. Shor. Applicaticns of random sampling in computa-

tional geometry. Discrete and Computational Geometry, 4(5):387-422, 1989.

[25] R. Cole and C.K. Yap. Geometric retrieval problems. In Proceedings of the 24th

Annual Symposium on Foundations of Computer Science, pages 112-121. IEEE.

November 1983.

[26] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

Berlin, West Germany, 1986.

[27] H. Edelsbrunner. Edge-skeletons in arrangements with applications. Algorith-

mica, 1:93-109, 1986.

94 BIBLIOGRAPHY

[28] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a mono-

tone subdivision. SIAM Journal on Computing, 15:317-340, 1986.

[29] H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines

and hyperplanes with applications. SIAM Journal on Computing, 15:341-363,

1986.

[30] P. Erdos and J. Spencer. Probabilistic Methods in Combinatorics. Academic

Press, New York, 1974.

[31] H. N. Gabow, J. L. Bentley, and R.E. Tarjan. Scaling and related techniques

for geometry problems. In Proceedings of the 16th Annual ACM Symposium on

Theory of Computing, pages 135-143, 1984.

, j2j M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, CA,

1979.

[33] M. D. Hansen. Approximation algorithms for geometric embeddings in the plane

with applications to parallel processing problems. In Proceedings of the 30th

Annual Symposium on Foundations of Computer Science, pages 604-610. IEEE,

October 1989.

[34] D. S. Johnson, 1989. Personal communication.

[35] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on

Computing, 12:28-35, 1983.

[36] D. T. Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Trans-

actions on Computers, 31:478-487, 1982.

[37] T. Leighton and C. E. Leiserson. Wafer-scale integration of systolic arrays. IEEE

Transactions on Computers, 34(5):448-461, May 1985.

BIBLIOGRAPHY 95

[38] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform

multicommodity flow problems with applications to approximation algorithms.

In Proceedings of the 29th Annual Symposium on Foundations of Computer Sci-

ence, pages 422-431. IEEE, October 1988.

[39] R. J. Lipton and R. E. Tarjan. A planar separator theorem. SIAM Journal of

Applied Mathematics, 36(2):177-189, April 1979.

[40] C. H. Papadimitrio and M. Yannakakis. The complexity of restricted spanning

tree problems. Journal of the ACM, 29(2):285-309, April 1982.

[41] H. Rosenberger. Order-k voronoi diagrams for sites with additive weights in

the plane. Technical Report UIUCDCS-R-88-1431, Department of Computer

Science, University of Illinois, Urbana, IL, 1988.

[42] J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadelphia, PA,

1987.

[43] P. Vaidya. Geometry helps in matching. In Proceedings o] the 20th Annual ACM

Symposium on Theory of Computing, pages 422-425, 1988.

